You can download the presentation at this link and view/download the webinar video at this link.
Category Archives: Foodmicrobionet
New dataset on bacterial and fungal communities of table olives.
A new dataset with a collection of published metataxonomic studies on bacterial communities of table olives has just been released. You can find it here:
https://github.com/ep142/Metaolive
You can use it with your own data and obtain quantitative comparisons of microbial communities of table olives and their environments in published studies. All new data produced in our METAolive project will end up here. The dataset is extracted from FoodMicrobionet v5.
If you want to see a use case checkout our poster presented at the Food Systems Microbiomes meeting, held in Turin from 14/5 to 17/5.
This project is co-funded by Ministero dell’Università e della Ricerca PRIN 2022, proposal 2022NN28ZZ, and received funding from the European Union Next-GenerationEU – PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR).
FoodMicrobionet 5 is now available!
The new major version includes (finally) fungi. As usual, you can find everything you need:
- on GitHub
- on Mendeley Data (here you will find the interactive Shiny App)
- on Zenodo
This version is currently co-funded by Ministero dell’Università e della Ricerca PRIN 2022 PNRR, proposal P20229JMMH, Mining the biodiversity of non conventional yeasts as bioresources for innovative fermented beverages through a genomics, and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)) CUP C53D23007560001
FoodMicrobionet 4.2.1 is now available
I have just released a new version of FoodMicrobionet. Version 4.2.1 includes 233 studies and 13895 food and food environment samples. New tables have been added (Abstracts table) and metadata for studies (a study_type field now provides a classification in longitudinal cross-sectional or mixed for the study design) have been improved. You can access the new version:
- on GitHub: data in the the_real_thing folder, plus a bunch of scripts
- on Zenodo: here you can find the mindata files, with ASV sequences
- on Mendeley data (the most recent version is in moderation, reserved DOI 10.17632/8fwwjpm79y.8)
Share (using the DOIs provided by Mendeley data and Zenodo) and enjoy. You can find the most recent publications on FMBN here.
New Foodmicrobionet publication
Un nuovo articolo
Abbiamo pubblicato un nuovo articolo sull’International Journal of Food Microbiology: Dynamics of bacterial communities and interaction networks in thawed fish fillets during chilled storage in air
Per scaricare il reprint clicca qui.
Literature cited, project 2017J2RMTN
- Berni Canani, , De Filippis, F., et al. 2017. Appl. Environ. Microbiol. 83: e01206-17. https://dx.doi.org/10.1128/AEM.01206-17.
- Bokulich, N. A., Mills, D.A. 2013. Appl. Environmen. Microbiol. 79: 2519–226. https://dx.doi.org/10.1128/AEM.03870-12.
- Callahan, B. J., McMurdie, P. J., Holmes, S. P.. 2017. ISME J. 11: 2639–4263. https://dx.doi.org/10.1038/ismej.2017.119.
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A.J.A., Holmes, S. P. 2016. Nature Meth. 13: 581–583. https://dx.doi.org/10.1038/nmeth.3869.
- De Filippis, F., Parente, E., Ercolini, D. 2017a. Microbial Biotechnol. 10: 91–102. https://dx.doi.org/10.1111/1751-7915.12421.
- De Filippis, F., Laiola, M., Blaiotta, G., Ercolini, D.. 2017b. Appl. Environ. Microbiol., 83: e00905–17. https://dx.doi.org/10.1128/AEM.00905-17.
- De Filippis, F., Parente, E., Danilo Ercolini. Ann. Rev. Food Sci. Technol. 9. https://dx.doi.org/10.1146/annurev-food-030117-012312.
- De Filippis, F., Parente, E., Zotta, T., Ercolini, D. 2018b. J. Food Microbiol. 265: 9–17. https://dx.doi.org/10.1016/j.ijfoodmicro.2017.10.028.
- EFSA (2015). The food classification and description system FoodEx 2 (revision 2). Supporting publication 2015:EN-804. http://www.efsa.europa.eu/en/supporting/pub/215e.htm
- Emerson, J. B., Adams, R. I., Betancourt Román C. M., Brooks, B., Coil, D. A., Dahlhausen, Holly H. Ganz, K., et al. 2017. Microbiome 5: 86. https://dx.doi.org/10.1186/s40168-017-0285-3.
- Erkus, O., de Jager, V.C.L., Geene, R. T. C. M., van Alen-Boerrigter, I., Hazelwood, L., van Hijum, S. A .F. T., Kleerebezem, M., Smid, E. J. 2016. Int. J. Food Microbiol. 228: 1–9. https://dx.doi.org/10.1016/j.ijfoodmicro.2016.03.027.
- Faust, K., Raes, J. 2016. F1000Research 5: 1519–14. https://dx.doi.org/10.12688/f1000research.9050.2.
- Fouhy, F., Clooney, A. G., Stanton, C., Claesson, M.J., Cotter, P. D. 2016. BMC Microbiol. 16: 123. https://dx.doi.org/10.1186/s12866-016-0738-z.
- Garofalo, C., Osimani, A., Milanovic, V., Aquilanti, L., De Filippis, F., Stellato, G., Di Mauro, S., Turchetti, B., Buzzini, P., Ercolini, D., Clementi, F., 2015. Food Microbiol. 49: 123-133. https://dx.doi.org/10.1016/j.fm.2015.01.017
- Humblot, C., Guyot, J.-P. 2009. Appl. Environ. Microbiol. 75: 4354–4361. https://dx.doi.org/10.1128/AEM.00451-09.
- Kuuliala, L., Al Hage, Y., Ioannidis, A.-G., Sader, M., Kerckhof, F.-M., Vanderroost, M., Boon, N. et al. 2018. Food Microbiol. 70: 232–44. https://dx.doi.org/10.1016/j.fm.2017.10.011.
- Layeghifard, M., Hwang, D. M., Guttman, D. S. 2017. Trends Microbiol. 25: 217–28. https://dx.doi.org/10.1016/j.tim.2016.11.008.
- Levy, S.E., Myers, R.M. 2016. Annu. Rev. Genom. Hum. Genet. 17:95-115. https://dx.doi.org/10.1146/annurev-genom-083115-022413
- McDonald, D., Price, M.N., Goodrich, J., et al. 2012. ISME J. 6(3): 610-618. https://dx.doi.org/1038/ismej.2011.139.
- McMurdie, P. J., Susan Holmes. 2015. Bioinformatics 31: 282–283. https://dx.doi.org/10.1093/bioinformatics/btu616.
- Mitchell, A. L., Scheremetjew, M., Denise, H., Potte, S., Tarkowska, A., Qureshi, M., Salazar, G. A., et al. 2018. Nucleic Acids Research 46: D726–35. https://dx.doi.org/10.1093/nar/gkx967.
- Nature Editorial 2016. Nature Microbiology 1: 16112. https://dx.doi.org/10.1038/nmicrobiol.2016.112
- Parente, E., Cocolin, L., De Filippis, F., Zotta, T., Ferrocino, I., O’Sullivan, O., Neviani, E., De Angelis, M., Cotter, P. D., Ercolini, D. 2016. Int. J. Food Microbiol. 219 28–37. https://dx.doi.org/10.1016/j.ijfoodmicro.2015.12.001.
- Parente, E., Zotta, T., Faust, K., De Filippis, F., Ercolini, D. 2018. Food Microbiol. 73: 49-60. https://dx.doi.org/10.1016/j.fm.2017.12.010.
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. 2013. Nucl. Ac. Res. 41 (Database issue): D590–96. https://dx.doi.org/10.1093/nar/gks1219.
- Qin J, et al. 2010. Nature. 464: 59-65. https://dx.doi.org/10.1038/nature08821.
- Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., Segata, N. 2017. Nat. Biotechnol. 35: 833-844. https://dx.doi.org/10.1038/nbt.3935.
- Sedlar, K., Kupkova, K., Provaznik, I. 2017. Comput. Struct. Biotecnol. J. 15: 48-55. https://dx.doi.org/1016/j.csbj.2016.11.005.
- Singer, Esther, Bill Andreopoulos, Robert M Bowers, Janey Lee, Shweta Deshpande, Jennifer Chiniquy, Doina Ciobanu, et al. 2016. Scientific Data 3: 160081. https://dx.doi.org/10.1038/sdata.2016.81.
- Stellato, G., De Filippis, F., La Storia, A., Ercolini, D. 2015. and Envirn. Microbiol. 81:7893-7904. https://dx.doi.org/10.1128/AEM.02294-15.
- Thompson, L. R, Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J. et al. 2017. Nature 104: 457-465. https://dx.doi.org/10.1038/nature24621.
- Vandeputte, D., Tito, R.Y., Vanleeuwen, R., Falony, G., Raes, J. 2017. FEMS Microbiol. Rev. 41: S154–67. https://dx.doi.org/10.1093/femsre/fux027.
- Zhou, J., He, Z., Yang, Y., Deng, Y., Tringe, S. G., Alvarez-Cohen. L. 2015. mBio 6 (1). https://dx.doi.org/10.1128/mBio.02288-14.