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Abstract

This thesis, that gathers the work carried out by the author in the last three years

of research, deals with the development of a patrolling algorithm formulated in the

framework of Null-Space-based Behavioral (NSB) control. In particular, it concerns

with the coordination control of robotic systems composed by multiple autonomous

vehicles aimed at surveilling a given area. It is easy to imagine the advantages

that, in performing such a mission, multi-robot systems present respect to single

autonomous robots, e.g., improving the mission efficiency in terms of time, quality

and robustness. The main problem is how to define the motion command for each

vehicle in the team to achieve the mission in a coordinated and safe way, even in the

presence of a large number of teammates as well friend vehicles and/or intruders.

In order to achieve such a mission, a centralized formulation is first provided in the

following; to overcome the problems related to such a solution, a general decentral-

ized architecture in the NSB framework has been provided, i.e., each robot is able to

decide the next action to perform only based on local sensors information. The main

idea is to define a set of elementary behaviors. These behaviors are composed in the

NSB framework in more meaningful actions. The main advantage, with respect to

other command fusion approaches, is that the output of the produced actions is

predictable. After having defined the set of actions, a supervisor needs to be de-

signed to select the action to perform. Two supervisors have been designed: a Finite

State and a Fuzzy Logic supervisors. The approach has been developed in a proper

mathematical framework and has been tested in simulation and experimentally in

different environments at the Distributed Intelligence Laboratory of University of

Tennessee, under the supervision of Prof. Lynne E. Parker. The thesis is organized

as follow:



• Chapter 1 presents an introduction to Multi-Robot Systems (MRSs). Thus,

starting by the definition of an MRS, and after some considerations concern-

ing the meaning of cooperation among multiple vehicles, this chapter tries to

present a taxonomy of these systems in order to give an idea of the main as-

pects concerning MRSs. In the same time, the state of the art of the research

in this field is given by describing the main applications of MRSs and the

principal control structures.

• Chapter 2 describes in a detailed way the main behavioral approaches to the

control of robotic systems: namely the layered control system, as a significant

case of competitive approach, and the motor schema control, as a significant

case of cooperative approach. Then, the Null-space-Based approach will be

introduced in its theoretical and mathematical characteristics, providing some

examples for task formulation and combination, remarking the differences from

layered control system and the motor schema control.

• In Chapter 3 the patrolling mission is described. Details about the application

of the NSB to this kind of mission for multi-robot systems will be presented.

In particular, after the definition of the elementary behaviors combined into

actions, a finite state and a logic fuzzy supervisors will be described in detail.

Finally, the proposed approach will be tested in simulation as well experimen-

tally.
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Chapter 1

Multiple-Robot-Systems

This chapter introduces the basic concepts behind the idea of using teams of autonomous

robots to accomplish a task. Moreover, a taxonomy and the state of the art in this research

field are presented. Finally, the main topics and contributions of this thesis will be briefly

presented.

1.1 Main Aspects of Multiple-Robot-Systems

Starting in early 1980’s, the attention of researchers was attracted by the idea of creating

groups of mobile robots able to collaborate, in order to accomplish one or more predefined

tasks. The basic principle behind this new approach to the robot coordination was directly

inspired by the observation of natural systems. In nature, in fact, it is possible to see a

group of animals that working together to achieve a common purpose; typical examples

can be found in the sea, on the ground and in the air, and more evolved animals can

collaborate to perform more complex social behaviors (see Figure 1.1). Ants and termites

can work together to build enormous nests or to transport a prey much heavier than the

individuals; birds can fly in compact formations during migrations, in order to save energy;

fishes organize themselves in schools with thousand individuals to protect from enemies.

Predators find it easier to chase down a fish swimming all alone than trying to cut out a

single fish from a huge group. Other animals, like lions, are able to organize group of them

to perform more complex tasks like hunting; in fact, naturalists observed that in a group

of lions some of them have to scare the prey, while some others have to intercept and kill

it. Alternatively, they can organize themselves to attack and kill a pray which is too big

for a single predator. An example is reported in Figure 1.1, where four lions attaching a

gnu can be seen. As the animal behavior has evolved in collaborative direction, in order
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Figure 1.1: Example of social animals. Top left: ants collaborate to form a living
bridge. Top right: flock of seagulls. Bottom left: batterly fishes schooling. Bottom
right: four lions collaborate during hunting.
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to increase the survival probability of the species, researchers start thinking that maybe a

multi-robot mobile system, where all the agents collaborate, can increase the chances to

accomplish a predefined task.

Generally speaking, the term Multi-Robot System (MRS) includes different typologies of

robotic systems, e.g., multiple industrial manipulators, mobile robots with manipulators

on board, or team of autonomous vehicles; in this thesis, the term will be used referring

to a team of cooperating mobile robots (grounded, aerial, underwater or marine surface

vessels).

From an engineering point of view, an MRS can improve the effectiveness of a robotic

system from the viewpoint of either the performance in accomplishing certain tasks, or

the robustness and reliability of the system.

In [41] it is emphasized that several require multi robots to be accomplished. This sit-

uation can arise not only when the robots can accomplish different functions, but also

when they have the same capabilities. Moreover, even when a single robot can achieve the

given task, the possibility of deploying a team of robots can improve the performance of

the overall system. With regards to the robustness, in [82] it is emphasized that an MRS

can be designed and implemented in such a way to guarantee two important features:

adaptivity and fault tolerance.

Adaptivity refers to the ability of an MRS to modify its own behavior over time, depend-

ing on changes in the surrounding environment, in the system mission, composition or

capabilities, so that the performance of the entire system can either be improved or, at

least, not degraded. Fault tolerance is the ability of an MRS to deal with individual robot

failures or communication failures, between two or more robotic agents, that may occur at

any time during the mission. Robustness is, therefore, the ability of the MRS to be both

adaptive and fault tolerant. All these aspects will be deeply discussed in Sections 1.2, 1.3.

The discipline concerning MRS is still relatively young and a common framework

is difficult to identify. Interesting contributions towards a classification of the work on

MRSs are the surveys by Cao et al. [24] and by Dudek et al. [41]. In [24] several axes for

characterizing an MRS are discused, while in [41] a classification of MRSs, more focussed

on the communication and computational aspects, is presented.
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1.2 A Multi-Robot-System Taxonomy

Based on [50], a taxonomy of Multi-Robot-Systems will be presented in this section. Start-

ing from [24], in [50] six classification dimensions are individuated: Cooperation, Knowl-

edge, Coordination, Organization, Communication and System Composition. A schema of

this taxonomy is given in Figure 1.2 In addition to these levels, other two more general

Figure 1.2: A taxonomy of Multi-Robot-Systems.

levels have been indivuated in [50] and described in the following, i.e., the Communication

and the Composition levels, describing, respctively, the way vehicles exchange information,

and the type of vehicles forming the team.

Cooperation Level

The first level we will consider is the configuration level. The meaning of cooperation

among robots has been widely discussed in the scientific community and different defini-

tions have been proposed. The most widely accepted definitions of cooperation are:

• a joint collaborative behavior that is directed toward some goal; in which there is a

common interest or reward [25];

• a form of interaction, usually based on communication [73];

• a join effort for doing something that creates a progressive result, such as increasing

performance or saving time [90];
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• a situation in which several robots operate together to perform some global task that

either cannot be achieved by a single robot, or whose execution can be improved by

using more than one robot, thus obtaining higher performances (see [78]).

The first definition leads to the study of task decomposition, task allocation, and

other distributed artificial intelligence issues; the second underlines the requirements of

communication or other common resources; the third is related to the performance mea-

surements of cooperation; finally, the last definition is based on the motivation behind

the use of collaborative systems. Moreover, these definitions point out different aspects of

cooperation: the task, the mechanism of cooperation, and the system performance. The

task can be considered as the aim of the multi-robot system, thus, it changes depending

on the different applications and the typologies of MRS. The task of the system is usually

decomposed in elementary sub-tasks (task de- composition) easier to program and control.

These sub-tasks can be distributed among multiple resources (task allocation), while the

overall behavior of the system depends on how these sub-tasks are recombined to obtain

the global behavior of the system. The mechanism of cooperation represents the logic that

originates the cooperation and it may depend on the control architectures and strategies,

on aspects of the tasks specification or on the dynamics of the interaction among the

behaviors. Thus, the MRS has to exhibit a collective behavior or a set of actions that

accomplishes the same behavior that was required for the single (more complex) robot.

As will be described in the following, to exhibit this cooperative intelligent behavior, the

members of the MRS have to communicate directly through an explicit communication

channel or indirectly through oindividual robot sensing.

Knowledge Level

Among the cooperative systems, a first important characterization can be based on how

much knowledge each robot has about the presence of other robots in its own team.

With regards to this aspect, awareness is defined as the property of a robot to have

knowledge of the existence of the other members of the MRS [110]. On the contrary,

unaware robot performs its task as if it is the only robot in the system. Cooperation

among unaware robotic agents is the weakest form of cooperation. For example, in a box-

pushing task many robots can contribute to the achievement of the common goal, while

behaving as single entities, i.e. without taking into account the presence and the actions

of the other robots, as in [60]. Looking at Figure 1.2, among aware systems, a third level



Chapter 1. Multiple-Robot-Systems 6

in the taxonomy can be introduced: the Coordination Level, that is concerned with the

mechanisms used for robot cooperation.

Coordination Level

The coordination mechanism can be defined as the way each robot takes into account the

actions of the other members of the team to achieve the common global goals.

In strongly coordinated systems (as in [72] and [54]), each robot exerts its influence on

the behavior of other robots, based on predefined or learned rules concerning the way the

robots have to interact.

On the contrary, weakly coordinated systems do not rely on a predefined coordination pro-

tocol. Finally, not coordinated systems do not rely on any form of coordination. Clearly,

all these approaches have their advantages and disadvantages. A not coordinated MRS,

or a weakly coordinated system implies a less complex design of the overall system and

better robustness with respect to faults; but, as a consequence, performance can be re-

duced because the robots execute contrasting tasks or interferences arise; in a few cases

it is not possible to achieve the goals at all. A coordinated MRS, on the contrary, can

avoid, or at least reduce, these problems in the face of a more complex design is needed.

In sum, the more the environment is dynamic and the goal is complex, the more a strongly

coordinated MRS is effective in achieving its goal. For these reasons, hybrid approaches

try to be a tradeoff between the coordinated and not coordinated architectures. In partic-

ular, their are based on the idea that one or more high level supervisors allocate tasks and

resources, and single low level robots exploit local information to accomplish a predefined

task. Examples of hybrid architectures are presented in [109] and [51].

Organization Level

In the case of strongly coordinated systems, the organization, defined as the level of cen-

tralization of the cooperation mechanism play a central role. In [50], centralization is

defined as the organization of a system having an agent that is in charge of deciding the

actions of the other robots; i.e., the leader is involved in the decisional process for the

whole team, while the other members act according to the decisions of the leader. Of

course, a centralized system is likely to have a hierarchical structure, in which the robots

operating under the supervision of a leader, can be leaders of sub-teams forming the MRS.

In strongly centralized systems, the leader remains the same during the mission. But, in

certain cases, it is possible that the role of leader is dynamically assigned during the mis-
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sion deployment, depending on environment changes or failures of the current leader. This

is the case in weakly centralized systems.

As opposed to centralization, in distributed systems, robotic agents are completely au-

tonomous in the decisional process with respect to others, i.e, a leader does not exist.

Weak and strong centralization allow assign in a simple way the tasks among the robots,

since, at each time instant, only one of them is in charge of this assignment.

Centralized MRSs have the disadvantage that they strongly rely on communication. Thus,

a communication failure results in a failure of the entire system. Moreover, a strongly cen-

tralized system can fail in accomplishing its task when the leader fails; a weakly centralized

system tries to recover from a leader failure by selecting a new leader, as in [78]. An ad-

vantage of the strongly centralized MRSs is that a customized robotic agent can be the

leader, e.g., by conferring to it the necessary computing and decisional capabilities.

On the contrary, a distributed MRS, as in [81], is characterized by a greater robustness to

the above mentioned problems, since each team member decides autonomously; however,

a greater complexity is required to achieve coordination between them.

In Figure 1.3 (left), an example of centralized architecture is shown, while on the right a

18 Swarm-Bots team organize themselves in order to drag a body in an hypothetic disas-

ter scenario [15]. In practice, many systems are not strictly centralized/decentralized. In

Figure 1.3: Examples of centralized and decentralized group of robots. Left: cen-
tralized architecture of the Decabot project. Right: a task performed by a team
with decentralized architecture.

fact, many largely decentralized architectures use leader agents [107]; in particular, differ-

ent hybrid centralized/decentralized architectures were demonstrated to take advantages

of both the typologies [17], [43], [38], [104].
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Communication Level

Strongly coordinated systems need to communicate in order to execute the coordination

protocol, while weakly coordinated and not coordinated systems can be developed with

or without communication, while unaware systems do not use communication at all. Two

types of communications can be distinguished. In the direct communication case, dedi-

cated on-board hardware is used to explicitly exchange information with other robots. On

the other side, in indirect communication, information exchange is achieved by stigmergy

[60], i.e. by sensed environment modifications. Obviously, direct communication is the

easier and most powerful way to exchange information between the members of an MRS,

but because of hardware failures or noise, it is also a critical point. Stigmergic communi-

cation is, of course, a more robust information exchange mechanism, but it implies a more

complex MRS design, since each member of the team needs to interpret the surrounding

environment changes and less information can be exchanged between team members.

Composition Level

The last level refers to the team composition. In particular, teams can be heterogeneous

or homogeneous. In heterogeneous teams, robots have differences either in the hardware

devices or in the software control procedures. In homogeneous teams, robots are exactly

the same both in the hardware and in the control software. Multi-mobile robot systems

based on this approach usually present different kind of vehicles, with different abilities.

Examples are presented in [105], [101]. In [105], the authors demonstrate that Unmanned

Aerial Vehicles (UAVs) and ground vehicles can collaborate to perform reconnaissance

and surveillance tasks (Figure 1.4); similar results can be found in [29], [26], [67]. In [101],

authors show the possibility of using three different robots (a mobile manipulator, a crane

and a mobile robot equipped with a camera) to perform an assembly task, as the three

robots have to collaborate to connect a beam at a given location (Figure 1.4). Other

important references in this sense are [30] and [82]. In particular in the last reference, an

architecture, called ALLIANCE, has been presented. The ALLIANCE architecture has

been developed in order to study cooperation in an hetewith the goal of achieving a fault

tolerant, reliable and adaptive mechanism for cooperative robot control. The homogeneity

or the heterogeneity of the members can influence the way in wich robustness is achieved.

In an homogeneous system, every agent can execute the same actions as the other team

members with the same results, so that a failure of a member can be easily compensated
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Figure 1.4: Example of heterogenous systems. Left: three robots cooperating for
surveillance. Right: three robots cooperating in an assembly task.

by another robot in the system; hence, fault tolerance is guaranteed. On the contrary,

adaptivity cannot be ensured, since there is no differentiation among the robots. Therefore,

homogeneous systems are typically used in the so called swarm-type approach [15], where

a large number of autonomous robots are used to form a distributed system. This method

allows the system to achieve the desired goals when the repetitive execution of a set of

actions is needed and time is not a critical resource.

On the other hand, heterogeneous robots allow the MRS to adapt more easily to the

different situations which could emerge in a dynamic environment, since they offer a better

chance to deal with new and unpredicted needs [82].

Obviously, working with heterogeneous systems implies a higher effort in realizing the

software needed to control the overall system.

1.3 Main applications, test-beds and current re-
search in Multi-Robot Systems

In this section, an overview of the main application of MRSs will be given. These appli-

cations are, of course, also test-beds to compare and test the effectiveness of more general

architecture and strategy. Finally, a brief description of the main current research branch

in the field of MRS, as individuated in [80] is reported.

The following applications have been individuated.

Foraging and Coverage

The foraging task requires the components of the MRS to pick up objects in the envi-

ronment; this is of course representative of tasks like toxic waste cleaning, mine cleaning,
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service robots [91], [52]. A major issue in this test-bed is to avoid interferences among

the robots during the task execution. The coverage task is very similar to foraging, since

it requires the robots to explore all the points of the free space in the environment. The

main issue for coverage is, therefore, to find effective techniques for cooperatively scanning

all the environment. Applications for coverage are: demining, snow removal, lawn mowing

and car body painting.

Multi-Target Observation

In the multi-target observation task, a team of robots detects and tracks a set of moving

objects. The robots have to maximize the time during which each of the moving target

are observed by at least one of the robotic agents forming the team. The multi-target

observation (also known as CMOMMT: Cooperative Multi-Robot Observation of Multiple

Moving Targets) has been firstly introduced in [79]. Multi-Robot Observation has many

connections with security, surveillance and recognition problems [79], where targets moving

around in a bounded area must be observed.

Object Transportation

The task of box pushing requires the robotic agents to cooperatively push boxes in order

to reach a desired configuration. The box pushing task has analogies with problems like

stockage, truck loading and unloading, car moving and parking. While in the box push-

ing task the objects are assumed to be on a plane, more generally, object transportation

focuses on lifting and carrying objects [102], thus increasing the complexity of the task.

Typical applications are transportation or assembly of heavy and/or large objects in in-

dustrial environments, such as terrestrial buildings, or planetary habitats [102]. In most

applications, object transportation is frequently used as test-bed for issues like motion

coordination and formation control.

Exploration and Flocking

Exploration and flocking are used to indicate different tasks that differ in the way they

are realized, but have the common feature to require MRS members to coordinate their

motion in order to improve performance.

Tasks like flocking, formation maintenance or cooperative map building can be considered

in the same class. In the exploration task, the robots need to distribute in the environment

in order to collect as much information as possible about the surrounding area. In the
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flocking task the goal for the robotic agents is to move together, such as in a flock. The

formation task consists in the robots moving in the environment forming particular shapes.

Cooperation among the robotic agents is also used to localize each other, and to fuse

information acquired from the environment. Map building of unknown environments is

a common issue related to exploration, and in particular, a very interesting topic is the

cooperative simultaneous localization and mapping, in which the robots need to localize

while moving and building the map of the environment [44]. The problem of exploration

and flocking is related to several applications, such as motion coordination in industrial

application and exploration of dangerous environments. Another example of exploration

task is given by the RoboCup Robot-Rescue league [56], that is a setting for experimenting

MRSs involved in searching victims in an unknown environment, representing a disaster

scenario.

Soccer

Soccer has been considered in the last years as an interesting test-bed for research in

multi-agent and multi-robot cooperation (see Figure 1.5). The uncertain dynamics and

hostile environment in which the robots operate makes coordination of the multi-robot

system a challenging problem.

In particular, in the Middle-Size league and the Four Legged league, all the robot

Figure 1.5: An example of robots playing soccer.

sensors must be on board; therefore robots are more autonomous and have to deal with

high uncertainty in reconstructing global information about the environment. On the

other hand, in the Small-Size league, the robotic agents can take advantage of a top view

of the environment provided by a camera on the top of the field; therefore, the coordination
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approaches in this league are mostly centralized. The use of coordination in the soccer

domains has demonstrated significant improvements in the performance of the teams.

1.3.1 Current research in Multi-Robot Systems

Finally, after having given taxonomy and having described the main current test-beds for

MRSs, it is worth briefly describing the current state of the art in autonomous multiple

mobile robotic systems [80]. They can be summarized as follows.

Architectures, task planning and control

This research area addresses the issues of action selection, the communication structure,

heterogeneity versus homogeneity in robots, achieving coherence in local actions, the res-

olution of conflicts, and other related issues. Each architecture that has been developed

for multi-robot teams tends to focus on providing a specific type of capability to the dis-

tributed robot team.

As highlighted in [80], relatively little work has been aimed at unifying these architectures,

in order to be applicable to a much wider variety of domains than is currently possible

with existing architectures.

Communication

A lot of work is being done by researchers to study the effect of communication on the

performance of multi-robot teams in a variety of tasks. Clearly, in many cases, communi-

cation of even a small amount of information can lead to great benefit [14] [64]. Other work

is aimed at achieving fault-tolerance in multirobot communication, such as maintaining

distributed communication networks and ensuring reliability.

Localization, mapping and exploration

A lot of work on localization, mapping and exploration has been done for single au-

tonomous robots, but only in the last years they have been applied to multi-robot teams.

In addition, very often, the research has considered existing algorithms, developed for

single-robot mapping, localization, or exploration, and has extended them to multiple

robots, as opposed to developing new distributed algorithms. One exception is some of

the work in multi-robot localization, which explicitly takes advantage of multiple robots

to improve positioning accuracy [77].
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As for single-robot approaches, research for multi-robot localization approaches use famil-

iar categories, based on the use of landmarks, scan-matching, graphs, and using either

range sensors (such as sonar or laser) or vision sensors. While the single-robot version of

this problem is fairly well understood, much work remains to be done for the multi-robot

case. For example, one question is about the effectiveness of multi-robot teams over single-

robot approaches, and in which cases the addition of robots brings diminishing returns.

This issue has begun to be studied, but much remains to be determined for the variety of

approaches available for localization, mapping and exploration.

Reconfigurable robotics

Relatively recent works are aimed at creating physical robot systems that are able to

reconfigure (e.g., to connect and reconnect in various ways to generate a desired shape),

depending on the required functions (see Figure 1.6). These systems have the theoretical

capability of showing great robustness, versatility and, even, self-repair capabilities. Most

of the work in this area involves identical modules with interconnection mechanisms that

allow either manual or automatic reconfiguration [115], [28]. Research in this area is still

very new, and the practical applications of these systems are yet to be demonstrated.

Clearly, this is a rich area for continuing advances in multi-robot systems.

Figure 1.6: An example of reconfigurable robots composed in different shapes.

Learning

Building a robot that learns to perform a task is one of the major challenges in artifi-

cial intelligence. Self-improving robots would relieve humans from much of the effort of
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programming and would allow operation in highly dynamic or partially known environ-

ments. The increasing interest in robot learning has partially been caused by advances in

the areas of reinforcement learning, behavior-based architectures and genetic algorithms,

Because of their complexity, the types of application that are typically used as test-bed

for this area include predator/prey [18], box-pushing [66], foraging, multi-robot soccer,

cooperative target and observation [79].



Chapter 2

The Null-Space-Based Behavioral
Control

In this chapter, a generic technique for the control of industrial manipulators, single au-

tonomous vehicles as well as for multi-robot systems, namely the Null-Space-Based Behav-

ioral Control (NSB), is presented. After a general overview of the more common behavioral

approaches existing in literature, the NSB approach will be addressed. More in detail, the

NSB is a behavior based technique, inherited from a class of kinematic inverse algorithms

for serial manipulators and properly extended to autonomous vehicles. This technique

tries to combine the cooperative nature of the motor schema control and the predictabil-

ity of the layered control system, and at the same time, overcome their disadvantages.

A general and rigorous mathematical description of the NSB will be carried out in the

following; moreover, a geometrical and intuitive explanation will be given. Finally, it will

be shown how the NSB approach can be applied to the case of the multi-robot systems,

by formulating two tasks in the NSB framework and discussing them in detail.

2.1 Review of the main behavioral approaches

Before introducing the main aspects of behavioral robotics and of the NSB approaches,

it is useful to briefly illustrate what are the most difficult aspects we need to face when

dealing with robot systems.

Autonomous robotic systems present several difficult challenges. An autonomous robotic

system must be extremely self- reliant to operate in complex, partially known and chal-

lenging environments using its limited physical and computational resources. In spite of

this difficulties, the control system must ensure in real time that the robot will achieve
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its tasks. Moreover, the control is required to be reactively fast but also thorough, while

preserving some properties like stability and robustness. More in detail, control and com-

putational architectures should be designed to meet at least the following requirements:

• Reactivity to the environment. The robot should be reactive to sudden changes

in the environment and capable to take into account external events within time

bounds compatible with the correct, efficient and safe execution of its tasks.

• Intelligent behavior. In real environments, different compromises need to be taken

into account in order to exhibit intelligent behavior. For example,consider the simple

case of a robot trying ro reach a goal. An obstacle along the path may require the

robot to drive away form the obstacle, moreover, the escape strategy must always

take into account the main objective (i.e. to reach the goal). External stimuli must

be always guided by the objectives of its main tasks.

• Resolving multiple goals. In the case of mobile robots, situations requiring conflict-

ing concurrent actions are inevitable. The control system should provide means to

fulfill those multiple goals.

• Robustness. The robot must handle noisy inputs, unexpected events and malfunc-

tions.

• Reliability. Robots should operate without failures or performance degradation over

a certain period.

Then one of the challenge when dealing with robotic systems consists in performing

a given mission in highly unstructured and complex environments. This complexity pre-

vents, on one side, from the possibility to elaborate once for all an off-line and static plan

that allows to accomplish the mission; on the other hand, imposes additional sub-missions

as obstacle-avoidance or other additional constraints that can be in conflict with the main

mission. As stated in [22], both in the case of single and multi-robot systems, the best ap-

proach seems to be the decomposition of the problem in several sub-problems, eventually

solvable in parallel.

Then, the problem becomes how to compose the commands required by each task in one

single motion command to the robot. The subproblems are commonly termed behaviors,

functional modules, motor schemes, or tasks; these terms will be used as synonyms; the
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term behaviors will be preferred in the following, and any method aimed at properly

composing the elementary behaviors will be named as behavioral approach. According to

[22], based on selective sensory information, each behavior produces immediate reactions

to control the robot with respect to a particular objective, such as obstacle avoidance or

wall following. Behaviors with different objectives may produce conflicting actions that

are seemingly irreconcilable. Thus a major issue in the design of behavior-based control

systems is the formulation of an effective mechanism for coordination of the behaviors’

activities [86]. This problem is known as the action selection problem (also refereed to

as the behavior coordination problem). Numerous action selection mechanisms have been

proposed over the last decade; a classification of the main approaches, whose a scheme is

reported in Figure 2.1 can be found in [95] .

Figure 2.1: Classes of action selection mechanism.

In particular, two main categories have been identified. The first one groups all the

arbitration mechanisms, i.e., competitives approaches aimed at selecting one single behav-

iors among a set. The second category is the command fusion mechanisms, whose aim

is to let the different behaviors cooperate, in order to accomplish the overall mission by

eventually exploiting the system redundancy. It is worth reminding, that all the above

concepts are suitable both for single-robot and multi-robot systems.

2.1.1 Arbitration Mechanisms

Arbitration mechanisms select one behavior at once and give it ultimate control of the

robot until the next selection cycle. Arbitration mechanisms for action selection can

be divided into: priority based, state- based and winner-take-all. These are different

techniques for selecting an appropriate action at any moment and resolving conflicting

situations.

Priority-based approach

In priority based mechanisms an action is selected by a central module based on a priori

assigned priorities. The Subsumption Architecture (SA) designed by Rodney Brooks [22]
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represents a way to incrementally build the control system of a robotic system. In Figures

2.2 and 2.3, the graphical representation of the single behavior and the general scheme of

this architecture are depicted. SA consists of a series of behaviors each performing some

functionalities (e.g. obstacle avoidance, wander around, explore), and action selection

consists of higher-level behaviors subsuming the output of lower-level.

sensors
behavior

actuators

Figure 2.2: Single task representation.

It is clearly a competitive approach, where each behavior is related to a layer that is an

asynchronous module working independently from the others, and elaborating an output

that is a motion command for the robot. Each behavior is able to process data from the

levels below and it is allowed to inject data into the their interface to inhibit or suppress

their output.

Avoid Collision

Wander Around

Explore

Sensors Actuators

Figure 2.3: The Subsumption Architecture.

In this way, the higher priority behavior is always achieved, while lower priority one

is achieved only when all upper behaviors in the hierarchy have zero output commands.

Clearly, this mechanism allows to easily add a new behavior simply assigning its priority

level.

However, it can be shown that a combinatorial explosion in the number of possible behav-

iors occurs when decomposing a mission according to the SA [112]. Another important

limitation of SA is the lack of explicit goals coding and its goal-handling capabilities. The

overall behavior of a SA based robot is an emergent property of the interaction of its be-

haviors and depends on the static and dynamic properties of the environment. In certain
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cases it would be convenient to have more direct control of the robot; however, typically

there is no way to guarantee such a property in the SA case.

State-based arbitration approach

According to state-based arbitration [58], a set of behaviors that is adequately competent

to handle the situation corresponding to the given state is selected.

Using this formalism, systems are modeled in terms of Finite State Automata (FSA),

where states correspond to execution of actions/behaviors and events, corresponding to

observations and actions, cause transitions between the states.

An example of such a system is depicted in Figure 2.4, where the mission consists in finding

and traversing a door while avoiding collisions. In [58] the agent and its interaction with

the environment are modeled by a FSA and is denoted the plant. The design objective

is to specify an additional FSA, called the supervisor, that interacts with the plant and

modifies the its behavior, in order to assure the desired behavior. The supervisor achieves

its objective by enabling and disabling the controllable events to modify the state transi-

tion function of the plant, so that only desired subsets of event sequences are generated

by the plant.

For complex systems and tasks with an high number of behaviors and events, this

formalism can be very tedious and complex. For this reason, in [59] linguistics tools that

automatically can transfer textual descriptions of plans to models and FSAs implementing

the desired behavior have been developed.

Winner-take-all approach

The last arbitration mechanism we will consider is the winner-take-all approach, whose

best expression is the work of Maes [65]. In this approach, based on a society-of-mind

type of idea [75], the system consists of a set of behaviors or competence modules which

are connected in a network. In the network, each behavior is represented by a tuple

(ci, ai, di, αi) describing: 1) The preconditions ci wich have to be fulfilled for the

activation of a competence module. 2) The effects after successful execution in form of

two lists ai (the add-list) and di (teh delete list). More in detail, a precondition p belongs

to ai (di) if it becomes true (false) after the execution of the module i. 3) The activation

level, αi, which is a measure of applicability of the behavior. When the activation level of

an executable behavior exceeds a specified threshold, it is selected to perform its action.
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door

not found
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Door
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door traversed
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door not

traversed

Figure 2.4: A Finite State Automata example. The mission consists in finding and
traversing a door while avoiding collisions.

The activation level of the behaviors is influenced by an external injection or removal

of activation energy, due to some external stimuli, as well as by internal exchange of

activation energy between the modules within the network. External injection of energy

is influenced, for example, by:

• current state environment: it is seen as a precondition for the behavior execution;

• current goal: a behavior receives as more energy as it is able to achieve the goal;

• protected goals: the energy is decreased if the behavior can undo a goal that has

been already achieved.

Internal sources of energy can be:

• activation of successors: an executable behavior spreads activation to behaviors with

preconditions that will become true after its activation;

• activation of predecessors: a behavior that is not executable spreads activation

to behaviors that may make it executable, i.e., behaviors which will make some

preconditions true when executed;
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• inhibition of conflictors: every behavior decreases the activation level of behaviors,

called conflictors, that can make its preconditions false.

The activation energy exchange takes place continuously and at each cycle an exe-

cutable behavior with the highest activation level is selected. Unlike traditional planners,

this mechanism does not have an explicit representation of plans, and it does not imple-

ment a specific search algorithm to construct plans. The system emergently chooses and

performs the next step of the sequence, which is influenced not only by the system goals

but also the state of the environment at each step. Due to its distributed nature, the

system is fault-tolerant, since the failure of a single module/behavior does not necessarily

lead to the failure of the entire system. However, this approach does not allow to analyt-

ically proof tasks fulfilment; moreover, several parameters and thresholds are involved in

this approach, thus making difficult their tuning and the application in complex systems.

2.1.2 Command Fusion Mechanisms

While arbitration mechanism belong to the class of competitive approaches, command

fusion mechanisms try to establish a sort of cooperation between behaviors, combining

recommendations from multiple behaviors to form a control action that represents their

consensus.

Different command fusion approaches differ in the way they achieve the consensus between

behaviors and, according to Figure 2.1, they have been classified in Voting, Superimposi-

tion, Fuzzy and Multiple Objective approaches.

Voting approach

The fist approach belonging to this class we will consider is the voting mechanism, whose

best example is the Distributed Architecture for Mobile Navigation (DAMN) described

in [92]. DAMN consists of a set of behaviors voting for or against the set of actions

constituting the possible set of actions of the agent. Behavior votes represent the behavior’s

preference over the set of possible actions. Then, an external arbiter selects the best action,

which is chosen as the action with the maximum weighted sum of the received votes,

where each behavior is assigned a weight by the mode manager. These weights reflect the

relative importance or priority of the behavior in a given context. The DAMN architecture

is represented in Figure 2.5. DAMN has been successfully applied to indoor as well as

outdoor real-world applications, such as the outdoor CMU Navlab vehicles, and indoor
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real and simulated robots at the Hughes Research Labs. In [92] the DAMN architecture

is used to control heading and speed of a mobile robot, while in [93] is used to choose

the field of view for a motorized camera head. Further, [113] investigates and compares a

number of Action Selection Mechanisms (ASMs), including DAMN and Maes’ Activation

Networks, in a simulated environment. The experimental results showed that DAMN is

superior to the other ASMs it is compared to.

behavior 1

behavior 2

behavior 3

Mode
Manager

weights

Arbiter

commands

actuators

Figure 2.5: The DAMN architecture scheme. A mode manager is in charge of gen-
erating a set of weights depending on the current state. According to the generated
weights and behaviors’ votes an arbiter selects the best action to activate.

Fuzzy behavior-based control

In fuzzy behavior-based control, each behavior is synthesized by a rule controlled by an in-

ference engine to produce a multivalued output. Behaviors that compete for the control of

the robot must be coordinated to resolve potential conflicts. Then, fuzzy behavior coordi-

nation is performed by combining the fuzzy outputs of the behaviors using an appropriate

operator, such as the fuzzy set union (e.g., the max operator). Then defuzzification (e.g.,

center of gravity, COG) is used to select a final crisp action ultimately used for control [95].

This scheme should lead to the selection of an action that represents the consensus among

the behaviors and thus comprises the action that best satisfies the decision objectives that

they encode.

Figure 2.6 shows a simple example of fuzzy decision mechanism; nevertheless the latter

can be integrated in very complex layered architecture, as, e.g., in [96].
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Figure 2.6: A fuzzy behavior-based example.

Multiple objective behavior approach

The philosophy behind this approach is that in real-world robotics it is not feasible to

aim for optimal control even, if an optimal strategy exists, because unstructured environ-

ments are unpredictable and robotic sensors and actuators are imperfect. It is, thus, more

appropriate to search for control strategies that in practice are efficient and sufficiently

satisfying, i.e., good enough rather than optimal; then, the control strategies should explic-

itly define a notion of optimality that is both suitable and practically feasible. In multiple

objective behavior coordination, a behavior i is formalized as an objective function that

defines a mapping from an action space, X, to the interval [0; 1]: oi : X → [0; 1]. The

action space, X = [x1; x2; . . .xn], is the set of all possible actions. Once the link between

behaviors and objective functions is established, we can formulate the coordination of

multiple behaviors as a multiple objective decision problem, that optimizes a number of

objective functions simultaneously, where the objective functions correspond to behavior

multivalued outputs. From the set of alternative actions X, an action x should be chosen

as

x = max
x∈X

[o1(x), o2(x), . . . on(x)], (2.1)

that corresponds to the action that best satisfies the corresponding behaviors. The optimal

solution is based on the concept of Pareto-Optimal Solution, and we remand to [31],[87]
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for the mathematical detail of solution to problem (2.1).

Superposition-based command fusion approach

The last command fusion approach we will consider is the superposition based command

fusion approach. A first example of this mechanism can be found in [53]. In this work,

an approach to motion planning is proposed, where the robot, represented as a point in

configuration space, moves, for example, under the influence of an artificial potential field

produced by an attractive force at the goal configuration and repulsive forces at the ob-

stacles. Action selection in this terminology corresponds, at each configuration, in moving

in the direction indicated by the negated gradient of the total potential.

Potential field approaches have been successfully used for planning collision-free path for

robotic arms [53] as well as for mobile robot platforms [36]. However, the usual formu-

lations of potential field methods do not avoid the occurrences of minima other than the

goal. In [36] the application of harmonic functions to potential field path-planning is de-

scribed. One of the properties of this approach is that it guarantees the exclusion of local

minima within the solution region.

The best and perhaps the most famous expression of such an approach is the work de-

scribed in [10]. Ronald Arkin in [10] proposes an approach based on the concepts of motor

schema and potential fields. The concept of schema originates in psychology and neurol-

ogy, and it is defined as “the basic unit of motor behavior from which complex actions can

be constructed. It consists of both the knowledge of how to act as well as the computational

process by which it is enacted”. There are two types of schemas: motor schemas, which

are concerned with control of actuators, and perceptual schemas, which are concerned

with sensing of environment features. For example, given an obstacle position, an obstacle

avoidance motor schema can control the robot away from the obstacle, while, in order to

detect the obstacles, an obstacle detection perceptual schema can be instantiated to keep

track of obstacles. The output of a motor schema is always a velocity command; then,

since more than one motor schema can be instantiated at each time instant to handle the

different goals, the different outputs can be added to generate an overall combined motor

action vd. Since motor schemas can have different importance, each velocity command is

multiplied by a gain whose value is usually determined empirically for a given mission and

environment

vd =
∑

i

αivi,
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where vi is the output velocity command generated by the i-th motor schema and αi is

the corresponding gain. A representation of such an architecture is depicted in Figure 2.7.

Clearly, in general, no task is completely achieved but, on the basis of gain vectors, a

compromise solution is found.

Environment
Supervisor

αn α2 α1

Task 1

Task 2

...

Task n

∑ u

Figure 2.7: The Motor-Schema architecture.

2.2 The Null-Spaced-based Behavioral approach

As discussed above, command fusion (cooperative) approaches allows to combine the out-

put of several tasks, trying to achieve different goals but leading to troubles in case of

conflicting tasks, while arbitration (competitive) approaches allow to perform one task

at a time, leading to an underused system but to a predictable output. The Null-Space-

based-Behavioral (NSB) approach can be defined as a competitive-cooperative approach,

trying to overcome the disadvantages of the above approaches. A good starting point is

the work done by B. Bishop in [21], where the concept of redundancy for standard robot

manipulators is extended to the control of platoons of autonomous vehicles.

A redundant manipulator is a system having a number of joints degrees of freedom larger

than task variables. The control of such systems has been widely studied in the past [100],
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extra-degrees of freedom can be accommodated to satisfy secondary objectives arranging

the tasks in priorities [76],[63]. The same concept of redundancy can be applied to the

problem of multi-robot systems, where the redundancy can be used to accomplish sec-

ondary tasks. In [21] four different tasks have been considered with two different priority

levels, and the overall robots’ velocities is the sum of the output velocities of each behav-

ior. Then, the proposed solution does not take into account the problem of algorithmic

singularities [35], roughly defined as a condition where two or more behaviors are in con-

flict; in addition the maximum number of achievable tasks is not taken into account, thus

making the solution very similar to the approach proposed in [10]. In [103] the controller

pursues a primary task that combines multiple objectives (according to the augmented

task strategy [13]) and uses, in proximity of obstacles, a null-space projection to locally

achieve their avoidance. Then, also in this case, the combination of different tasks at

the same level of priority requires structurally compatible tasks, making this solution not

robust toward algorithmic singularities [35].

The NSB approach is based on the task-priority kinematic control approach for ground

fixed manipulators [76]. In particular, the task-priority method allows to properly handle

the coflicts among different tasks. The problems related to singularities are deeply dis-

cussed in [35], where a singularity-robust task-priority strategy, in the case of two tasks,

is derived. According to this technique, a secondary task is fulfilled if it does not coflict

with an higher level task, while it is released in case of coflict. The more general case of

compatibility of three or more tasks handled in the NSB framework has been discussed

by Antonelli in [7], resorting to a Lypunov-based analysis. Finally, the NSB approach has

been experimentally compared to the layered-control system and motor-schema control in

the case of a single wheeled vehicle [8] and succesfully applied to control of a platoon of

grounded vehicles [9],[11].

2.2.1 The NSB mathematics

In this section, the mathematical formulation of the NSB approach. Let us consider a

platoon composed by n vehicles, the vector expressing the position of the i-th vehicle in

the inertial reference frame is

pi =
[

xi yi zi

]T

∈ R3×1, (2.2)
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while the corresponding velocity is

ṗi = vi =
[

ẋi ẏi żi

]T

∈ R3×1. (2.3)

Correspondingly, the configuration of the overall platoon in compact form is

p =
[

pT
1 pT

2 . . . pT
n

]T

∈ R3n×1, (2.4)

and

v =
[

vT
1 vT

2 . . .vT
n

]T

∈ R3n×1. (2.5)

The task assigned to the platoon can be defined by the function

σ = σ(p) ∈ Rm×1, (2.6)

depending on the platoon state p. Assuming σ differentiable, it is useful to consider the

relationship between the first derivatives of σ and p:

σ̇ =
∂σ(p)

∂p
v = J(p)v, (2.7)

where the matrix J ∈ Rm×3n is the configuration dependent Jacobian matrix of the trans-

formation σ = σ(p). The relationship (2.7) can be adopted for any type of robotic system,

no matter the number and type of robots; the system can be, for example, composed by

one or more industrial manipulators or wheeled robots; the only difference will involve the

state dimension and, consequently, the Jacobian dimension. Relationships (2.6),(2.7) are

the so-called direct kinematic equations of the system that allows to calculate the value of

the task function given the system configuration (in this case the robots’ positions p). The

direct kinematic problem is generally easy to solve, while the inverse kinematic problem

defined as the calculation of the motion references pd corresponding to a desired time

history σd of the task function, is usually more complex. It is a very important problem

since, generally, by means of the task function σd, the desired high level aggregate behav-

ior of the system is specified, while the corresponding desired positions pd are the ultimate

commands sent to the robots. The inverse kinematics problem has been widely studied in

the past, mainly with reference to serial link manipulators [100], where the main problem

is the calculation of the joint trajectories, given the desired time history of the end-effector

pose (position/orientation).

The inverse kinematics problem in the case of a (n × n) square Jacobian matrix can
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be apparently easily resolved by assigning σd and computing the corresponding vehicles’

velocities

vd = J(pd)
−1σ̇d. (2.8)

However, more interesting is the case of a low rectangular matrix J (i.e. with more columns

than rows), a common case for multi-robot-systems. In this case, infinite solutions to the

inverse kinematic problem exist; one possible choice is

vd = J#σ̇d, (2.9)

where the dependency of the Jacobian on the platoon state has been omitted and J# ∈

IR3n×m is the Moore-Penrose inverse of matrix J , having the following properties:

• JJ#J = J , i.e., J# is a generalized inverse of J .

• J#JJ# = J#, i.e., J# is an outer pseudoinverse of J .

• J#J is symmetric.

• JJ# is symmetric.

One possible expression of J# is

J# = J† = JT
(

JJT
)−1

. (2.10)

It can be shown that the choice (2.10) allows to locally minimize the norm of vehicles’

velocities [99]. The vector vd needs to be continuous-time integrated to compute the cor-

responding desired robot positions pd, used to update the Jacobian J .

The following algorithm is usually adopted known as CLIK (Closed Loop Inverse Kine-

matics) algorithm:






vd(t) = J(p(t))† [σd + Λσ̃]

p(t) =
∫

t

t0
vd(t),

(2.11)

where σ̃ = σd − σ(p(t)) and Λ ∈ Rm×m is a positive definite matrix. It can be easily

shown that equation (2.11) leads to the following asymptotically stable system

˙̃σ + Λσ̃ = 0. (2.12)

However, since in practical applications a discrete-time implementation is needed, the

discrete-time integration must be adopted, leading to






vd(tk) = J†(pd(tk−1)) [σ̇d(tk) + Λσ̃]

pd(tk) = pd(tk−1) + vd(tk)∆t,
(2.13)
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where σ̃ = σd(tk−1) − σ(pd(tk−1)) and ∆t is the sampling time.

As stated above, when dealing with Multi-Robot-Systems several tasks need to be handled

in the same time. Without loss of generality, let us consider two tasks σd,1 ∈ Rm1×1,

σd,2 ∈ Rm2×1 and the corresponding Jacobians J1 ∈ Rm1×3n, J2 ∈ Rm2×3n with

m1 + m2 ≤ 3n, we can consider the following continuos time algorithm



















vd = J† [σ̇d + Λσ̃]

J =





J1

J2



 , σd =





σd,1

σd,2



 , σ̃ =





σ̃1

σ̃2



 ,
(2.14)

that consists in stacking all the tasks in an overall Jacobian, J , and applying the solu-

tion (2.10). It can be shown that solution (2.14) is not robust, since conflicting tasks

result in a singular Jacobian J . A more robust solution has been presented in [35] where

a priority mechanism is used. Let us consider the task velocity

vd,i = J
†
i [σ̇d,i + Λiσ̃] , (2.15)

where the subscript i denotes the i − th task and task 1 is the highest priority task.

Considering N tasks, the NSB solution to the task combination can be formulated in

an iterative way, defining the velocity vector as follows

v(i) = vd,i + N iv
(i+1), i = 1, 2, · · ·N, (2.16)

with v(n+1) = 0, v(1) = vd, and the matrix N i = N (J i) =
(

I − J
†
iJ

T
i

)

is the null-space

projector matrix of Jacobian J i (i.e. its columns form a basis of the null space of matrix

J i). For example, in the case of only three tasks (2.16) becomes

vd = vd,1 + N1 (vd,2 + N2vd,3) . (2.17)

In sum, velocities computed by (2.13), corresponding to a lower priority task, are projected

onto the null-space of the immediately higher priority task; then, eventually conflicting

velocity components are cut off before being added to higher priority task velocity compo-

nents. Figure 2.8 shows a representation of the NSB approach in the case of three tasks,

whose priorities are assigned by a supervisor, where finally the corresponding task veloci-

ties are composed in the NSB sense 2.16. A simple example of such an architecture is given

in [34], where a robot manipulator moves in an environment with obstacles performing

one or more tasks handled in the NSB framework. In particular, when the robot is close
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Figure 2.8: The Null-Space-Based schema in the case of three tasks.

to an obstacle, to preserve the manipulator integrity the supervisor assigns the maximum

priority to the obstacle avoidance task and lower priorities to the other tasks.

The NSB approach can be considered a competitive-cooperative approach; in fact, it

allows to combine several tasks at the same time, while avoiding conflicts between tasks,

as lower priority tasks are fulfilled only in their components not affecting higher priority

tasks. Moreover, it is worth noting that the motor-schema control and the layered control

systems can be cast as particular cases of the NSB approach. By considering N tasks

stacked in the vector σ

σ =
[

σT
1 σT

2 · · · σT
N

]T

,

and the corresponding Jacobian

J =
[

J1 J2 · · · Jn

]

,

by using a weighted pseudoinverse J
†

W
= W−1JT

(

JW−1JT
)−1

and

W = diag
{

w1I, w2I, · · · , wnI

}

,

with I proper dimension identity matrices, it is possible to obtain the motor-schema

control by choosing wi ∈ [0,∞), and the layered-schema system by choosing wi = 1 and
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wj = 0,∀i 6= j to selectively activate the task i.

2.2.2 NSB geometric interpretation

The NSB approach to task combination can be better illustrated in a geometrical way in

the simple case of a 2-DOF mobile robot moving in a plane. Let’s consider two tasks, with

task 1 and being v1 and v2 the corresponding velocities; such a situation is depicted in

Figure 2.9.

v1

v2

Figure 2.9: Velocity vectors in the case of two behaviors: v1 is the velocity vector
corresponding to the highest priority task, v2 is the velocity vector corresponding
to the lowest priority task.

In Figure 2.10 is depicted the overall output vector as generated by the motor-schema

approach. The overall output velocity is a weighted combination of the two tasks velocities

and, in general, it does not ensure the fulfilment neither of the first or the second task.

v1

v2

vd =
∑

αivi

Figure 2.10: Task velocity composition in the motor-schema control case. The
overall output velocity vd is a weighted sum of the task velocities v1 and v2.

In Figure 2.11 is depicted the overall output vector as generated by the layered-control

approach. The overall output velocity is equal to the velocity generated by the highest

priority task.
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v2

vd = v1

Figure 2.11: Task velocity composition in the layered-control case. The overall
output velocity vd is equal to the velocity generated by the highest priority task v1.

Finally, in Figure 2.12 the Null-Space-Based-behavioral control case is depicted. The

velocity corresponding to task 2 is projected into the null space of the task 1 Jacobian (N1);

then, the velocity components affecting the primary task are cut off and the remaining

component is added to the velocity v1 corresponding to task 1. Clearly, in this simple

case the compatibility condition among these two tasks is equivalent to the orthogonality

between the vectors v1 and v2.

v1

v2

N1v2

vd = v1 + N1v2

Figure 2.12: Task velocity composition in the NSB case. The velocity v2 is projected
into the null space of the task 1 and added to v1.

As further example of these concepts, let consider the task of keeping n robots on a

circumference with radius r and center c; clearly the robots can move on the circumference

without affecting the given task. All this motions are in the null space of this task; the

main idea is to use them to satisfy lower priority tasks, as can be, for example, the escorting

task [11].

2.2.3 Task Compatibility analisys

After having introducted the NSB approach, it is worth investigating the mathematical

conditions for tasks’compatibility and fulfilment. first, We will consider case of two tasks,
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then, the case of three tasks one and, finally, the general case of N tasks.

It is straightforward to show that the first task is always fulfilled, since from equa-

tions (2.16)

σ1 = J1vd = J1vd,1 + J1N1v
(2) = J1vd,1 = σd,1, (2.18)

as J1N1 is identically null. With reference to the case of two tasks, in [35] a detailed anal-

ysis of algorithm singularities has been carried out. In particular, the tasks’ compatibility

can be expressed by means of the annihilating condition [7]

J2J
†
1 = O, (2.19)

or, equivalently,

R(JT
2 ) ⊆ N (J1), (2.20)

where R(·) denotes the range of a matrix. In this case, in fact,

σ2 = J2vd = J2vd,1 + J2N1vd,2 = J2J
†
1σd,1 + J2(I − J

†
1J

T
1 )vd,2

= J2vd,2 − J2J
†
1J

T
1 vd,2 = J2vd,2 = σd,2.

(2.21)

In [7] the tasks combination strategy illustrated above is denoted as successive inverse-

based projection strategy.

With reference to thecase of three tasks, let us define two tasks as independent if

ρ(J†
i ) + ρ(J†

j) = ρ([J†
i J

†
j ]),

where ρ(·) denotes the rank of a matrix; then three tasks are compatible if two successive

tasks are annihilating, if all couple of tasks are independent and by means of a proper

choice of matrix Λi in equation (2.13). Finally, in the general case of N tasks, simple

conditions for compatibility do not exist, and a very restricting sufficient condition is to

require the annihilation among all the tasks. The last important question that needs to be

addressed is the number of tasks that can be handled simultaneously. Let us suppose that

the systems has n-DOF and that the rank of the Jacobian of the primary task (supposed

non-singular) is r1, then the available DOFs for the secondary task, supposing to be not

conflicting with the primary one, is n − r1. Iterating such a reasoning, and supposing

all the tasks not conflicting, it is possible add tasks as far as
∑

ri ≤ n; if the equality

relationship is satisfied, no further tasks can be added as they will projected in an empty

space.
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2.2.4 Examples of application of NSB

In this Section two simple tasks formulated and handled in the NSB sense are presented.

For a detailed list and dissertation about tasks handled in the NSB framework see [9],[11].

Let us consider a platoon of n grounded robots moving in a plane; the position of each

robot is

pi =
[

xi yi

]T

∈ R2×1, (2.22)

being the component zi identically null. In this situation, the number of overall available

DOFs is 2n, being 2 the DOFs of each robot.

Barycenter

The barycenter of the platoon is defined as the mean value of robot positions:

σb =
1

n

n
∑

i=1

pi, (2.23)

the corresponding Jacobian matrix is

J b =
1

n





· · · 1 0 · · ·

· · · 0 1 · · ·



 ∈ IR2×2n, (2.24)

that is a rank-2 matrix and independent of the platoon configuration. The pseudo-inverse

of matrix J b is

J
†
b =

















...
...

1 0

0 1
...

...

















∈ IR2n×2. (2.25)

It can be shown that the null projector matrix Nb =
(

I − J
†
bJ b

)

N (J b) =

































1 − 1
n

0 − 1
n

0 · · · − 1
n

0

0 1 − 1
n

0 − 1
n

· · · 0 − 1
n

− 1
n

0 1 − 1
n

0 · · · − 1
n

0

0 − 1
n

0 1 − 1
n

· · · 0 − 1
n

...
...

...
...

...
...

...

− 1
n

0 1
n

0 · · · 1 − 1
n

0

0 − 1
n

0 1
n

· · · 0 1 − 1
n

































∈ IR2n×2n. (2.26)

has rank 2(n − 1). Then, if n = 1 this task saturates all the available DOFs.
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Variance

Another useful task when dealing with platoons of robots, is the task variance that allows

to control the spreading around the barycenter. One possibile formulation of this task is

the following:

σv =
1

n

n
∑

i=1





xi − σb,x

yi − σb,y



 ∈ IR2×1. (2.27)

The corresponding Jacobian matrix has the following expression:

Jv =
2(n − 1)

n2





· · · xi − σb,x 0 · · ·

· · · 0 yi − σb,y · · ·



 ∈ IR2×2n, (2.28)

whose rank is 2 except for the unlikely case of all vehicles concentrated in the same point;

this task has no sense when only one vehicle is considered. The pseudoinverse J†
v has the

following expression

J
†
b =

n2

2(n − 1)

















...
...

xi−σb,x
∑n

k=1 (xk−σb,x)
0

0
yi−σb,y

∑n
k=1 (yk−σb,y)

...
...

















∈ IR2n×2. (2.29)

As in the previous case, in the hypotheses of a full rank matrix Jv, the null projector

matrix Nv has rank 2(n − 1).

Example of compatibility analysis of tasks barycenter and variance

Let us consider again the case of an n robot platoon. A very common problem when

dealing with such systems could be the control of the barycenter of the platoon and, at

the same time, the spreading of the platoon around the barycenter [11]. This can be easily

achieved by combining, in the NSB framework, the task barycenter and the task variance,

considering the first one as the highest priority task and the second one as the lowest

priority task. The overall commanded velocity is given by

vd = J
†
b [σ̇d,b − Λ(σd,b − σb)] + (I − J

†
bJ b)J

†
v [σ̇d,v − Λ(σd,v − σv)] . (2.30)

As discussed in Section 2.2.3, in order to get the convergence of σb and σv, respectively,

to σd,b and σd,v, it is necessary to investigate the condition

R(JT
v ) ⊆ N (J b).
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This condition holds when the columns of JT
v can be expressed as linear combination of

columns Nb = N (J b). To this aim, let us consider, for example, the first column of JT
v

c1 =
[

x1 − σb,x 0 x2 − σb,x · · · xn − σb,x

]T

∈ IR2n×1.

We have to show that

∃αx : c1 = N (J b)αx. (2.31)

for some value of the vector of coefficients αx ∈ IR2n×1. It is straightforard to see that,

taking into account that σb,x = 1
n

∑n
i=1 xi,

αx =
[

x1 0 x2 · · · xn 0
]T

.

The same reasoning holds for the second column of JT
v , where, in this case

γy =
[

0 y1 0 y2 · · · yn

]T

.

In sum, R(J†
v) ⊆ N (J b), i.e. the two tasks barycenter+variance are fully compatible.



Chapter 3

The Patrolling Mission

In this chapter a brief overview of the main multi-robot security applications and of some

experimental setup will be done. In particular, we will concentrate on the multi-robot

patrolling mission, defining its aims, applications and the state of art in this field. Then, a

general decentralized architecture in the framework of the Null-Space-behavioral approach

will be described in detail and applied to this mission.

3.1 Collaborative Multi-Robot Systems for Secu-
rity Tasks

As stated in Chapter 1, MRSs present several advantages in performing tasks with respect

to a single robot system. In particular, collaborative multi-robot teams have great poten-

tial to add capabilities and minimize risk within the security domain.

In fact, robots are increasingly used in performing patrolling, surveillance and military

tasks. Today, such robots are not able to carry out a mission from they own, they are not

very sophisticated in terms of artificial intelligence (AI); hence, most of them are remote-

controlled by human operators. This is due also to the risks connected to robots’ failures

in such a scenarios. For these reasons, the terms unmanned ground vehicles (UGVs) or

unmanned aerial vehicles (UAVs) are , often, used in lieu of the term robot.

There has been a rapidly increasing military research and development effort into different

application scenarios, from tiny spy robots, that can be hurled into enemy buildings for

surveillance purposes, to full-size support vehicles that can drive themselves and supply

troops in the field. The U.S. Military has invested and is investing heavily in research

and development towards testing and deploying increasingly automated systems in the

military field. The Defense Advanced Research Projects Agency (DARPA) has organized
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competitions in 2004 and 2005 for a prize of 2 million dollars to develop unmanned ground

vehicles capable of navigating through rough terrain, like deserts.

The motivations behind these huge efforts are in the importance of the applications in

wich these robots can be involved.

One of the relevant tasks is de-mining [111]. It consists in clearing roads and fields

from mines before, during or after conflicts. Different types of de-mining that are currently

distinct disciplines need to be combined. Especially tactical and post-conflict de-mining

have quite different requirements in de-mining and accuracy. Robots should be capable

of detecting all types of mines and optionally mark them. Wherever possible, they should

either remove the mine or disarm it in place and, when a mine is found, warn the operator

providing the mine’s location and type, including the estimated time and success rate to

clear the mine. Optionally, the UGV should inform the operator when the mine is marked

or disarmed. It should be possible to operate the vehicles both in a teleoperated and in

an autonomous mode when clearing the assigned area or route. In particular, the UGV

should be usable on all kinds of roads and fields as well as in urban terrain, operate under

all climatic and weather conditions and be able to receive and use airborne information

on possible mine locations.

In the convoying or transport of goods task [85], UGVs are used to transport necessary

goods both on roads and in heavy terrain. This type of UGVs should be able to transport

goods in an adequate time, meaning in a time comparable to that of a human driver.

The UGV should either be capable of loading and unloading itself or be capable to be

handled by one or more specialized UGVs in the convoy. The location of the convoy

should be known at all times. Even if the operator have to be able to take over control

of these vehicles at any time, they have also to be able to move autonomously in certain

conditions. Finally, very important is the capability of this type of UGV to mix in normal

traffic, including all the involved legal issues.

Another important tasks is to check vehicles and people for explosives and weapons at

checkpoints. In this task, robot systems need to approach a suspected vehicle or person

and search for weapons and explosives. Whenever such devices have been found, robots,

in particular UGVs, should alert the human operator and forbid the vehicle and person to
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move away. Moreover, the type of explosive needs to be identified alerting all the people

in the vicinity. For optimal usability, the UGV should memorize cars and persons spotted

at the checkpoint for later analysis.

Finally, the last important task have been individuated is the reconnaissance and

surveillance task. In this task, UGVs are used for zone, area, route and point reconnais-

sance. UGVs, but also UAVs, have to give information about location and movement of

persons and vehicles. The robots should also provide information on contaminated loca-

tions, map information on proper maps and warn the operator when a threat for an area

is detected.

These vehicles should work under all weather conditions, in all climates and in all sorts of

terrain, and communicate with other manned or unmanned vehicles to point targets and

to identify persons and vehicles with high reliability.

The use of autonomous robots in this field is promising because of the advantages they

present. Some of them are:

• the lack of training required for robotic pilots;

• autonomous vehicles can perform maneuvers which could not, otherwise, be done

with human pilots;

• vehicle designs do not require a life support system;

• autonomous robots can actively collect and maintain timely and accurate situational

awareness;

• more robotic units can be controlled by a single operator.

However, the largest drawback of robotic systems is their partial inability to accommodate

for non-standard conditions. Advances in artificial intelligence in the future might help to

rectify this.

The most prominent system currently in use is the UAV (as IAI Pioneer and RQ-1 Predator

in Figure 3.1) which can be remotely operated from a command center in reconnaissance

tasks. In particular, RQ-1 Predator is advised above all for its long term autonomous

flight capabilities. This vehicle is also equipped with high resolution visual and infrared

sensors, integrated GPS (Global Positioning System), and can eventually communicate



Chapter 3. The Patrolling Mission 40

with humans. Sandia National Laboratories developed the Surveillance And Reconnais-

Figure 3.1: Example of UAV vehicles. On the left: IAI Pioneer. On the right:
RQ-Predator.

sance Ground Equipment (SARGE) robotic vehicle for the US Department of Defense [88].

SARGE, in Figure 3.2 (top left), is a teleoperated robot for battlefield surveillance appli-

cations without computing power, aimed at supporting autonomous navigation or vision

processing. The second version, SARGE II, employs differential GPS (DGPS) for au-

tonomous navigation and neural network processing of Sandia’s Laser Radar (LADAR)

range images for local obstacle detection and avoidance.

Robotic System Inc. developed the Mobile Detection Assessment and Response System-

Exterior (MDARS-E) [42], in Figure 3.2 (top right). The MDARS-E platform is built

around a diesel-powered, hydrostatically driven vehicle. Its navigation employs a DGPS

receiver integrated with inertial and landmark referencing sensors. MDARS-E uses low-

bandwidth radio-frequency communications to transmit its real-time position for display

on a site map and innovative video compression, image processing, radar and spread spec-

trum techniques. The MDARS goal is to provide multiple mobile platforms that perform

random patrols within assigned areas of warehouses.

In [98], an Autonomous Robot for Surveillance Key Applications (ARSKA) is pre-

sented. This UGV, in Figure 3.2 (bottom left), is built around an all-terrain vehicle and

is equipped with ultrasonic sensors for contour-following and obstacle avoidance. Two

positioning systems have been used: an external optical measurement device, and DGPS.

ARSKA can be controlled using a ground station, whose basic functions are task prepara-

tion, monitoring and on-line telecontrol of the vehicle. ARSKA cab be used for survellance

tasks.
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Figure 3.2: Example of military vehicles. On the top left: SARGE. On the top
right: MDARS. On bottom left: ARSKA. On bottom right: Guardium

3.2 The Patrolling Task

The patrolling task is defined as the act of walking or traveling around an area, at regular

intervals, in order to protect or supervise it [33].

The mission of patrolling a given region or border is of critical interest in modern societies.

Border patrol is probably entering a new era since several countries are replacing humans

performing such tasks with robots with increasing autonomy. As reported in Section 3.1,

examples, where advanced testing facilities have been installed, include United States,

Israel and South Korea. Similar projects, with guardian capabilities of civilian and military

spaces, run in Japan, Singapore and Europe.

Perimeter surveillance algorithms form the basis for effective monitoring in a number of

applications including monitoring oil spills [37], contaminant clouds, algae bloom [19],

forest fires [27], and border security [49]. In [94], algorithms that use image data from

multiple cameras to determine a perimeter breach are used. In [84], authors use a chain

of ultrasound sensors with a simple detection scheme to identify border crossings, while

in [16] radar equipment is used to identify when people or vehicles come too close to

runways. For spill monitoring and other dynamic perimeter scenarios, surveillance vehicles

are equipped with chemical concentration sensors [71], infrared cameras [27] or standard

optical cameras [37].

As stated in Section 3.1, a few robot patrolling applications have been developed, such
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as MDARS [49], or the RQ-5 Hunter UAV. Recently, commercial border patrol application

have been proposed as well, such as Guardium and the unmanned autonomous speed boat

Protector manufactured by Rafael Armament Development Authority Ltd.

Clearly, the patrolling task is by nature a multi-agent task and there are a wide variety

of problems that may be reformulated as particular patrolling task (such as rescuing,

tracking, detecting). Recently, several architectures for multi-agent systems have been

proposed and evaluated on the patrolling problem, giving encouraging results [61]. In

particular, in [61] it was shown that simple strategies implemented through reactive agents

with a small amount of communication can achieve impressive results. Also, some authors

of these papers suggested that an approach based on partitioning the territory, such that

each agent patrols in its own region, could also work well.

It is difficult to give an exact definition of robotic border patrol, in the sense that a

patrolling mission may require different objectives to be fulfilled and may be subject to

several constraints, depending on various conditions, such as the specific robot locomotion

system, the kind and size of the border to patrol, the civilian or military applications, the

number of available robots, their equipment and communication capabilities.

In [62] an analysis of the main patrolling task issues and some multi-agent-based so-

lutions are presented. Several features, such as agents type, agents communication, coor-

dination scheme, agents perception and decision-making, are evaluated by using different

evaluation criteria. The achievements in [62] have been further extended in [6], pointing

out in more detail advantages and disadvantages of each multi-agent architecture, as well

as the impact of the border geometry on the performance. In [57] and [32], graph-theory

is used to find the optimal solution of a mathematical problem expressing a multi-robot

surveillance problem. In [5], the authors analyze non-deterministic paths for a group of

homogeneous mobile robots patrolling a frontier, under the assumption of an hostile agent

trying to enter the area, where the latter has full knowledge of the algorithm.

However, in most of the above mentioned works the patrolling problem is approached

from an analytical perspective, having in mind centralized control solutions. Analytical

approaches are not necessarily a good choice from a practical point of view [5], since they

are likely to make the patrolling algorithm predictable. On the other hand, a pure random

motion of the robots is unlikely to be effective [62].
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3.3 Control Approaches for Performing Tasks

The control problem described above requires an high level of autonomy and several tasks

to be performed such as, e.g., planning, navigation, agent recognition, eventual communi-

cation, environment awareness, or the implementation of some kind of reasoning method;

the last are known in the literature with the name of Artificial Intelligence (AI) [47]. AI

methods generally consist in a deliberation based on symbols under first order predicate

logic or probability theory. They require a proper Knowledge Representation (KR) since

the reasoner, here the mobile robot, needs a proper representation of the environment

to reason about; from a general point of view this problem is still unsolved [47]; here,

KR should satisfy the strict requirements of time constraints and robustness, and thus

an epistemological rich formalism is left behind for a tractable and quick inference prob-

lem. Among the various kind of formalism studied, logic and probability theory are the

most widely used; moreover, one appealing method is represented by Fuzzy Logic, widely

applied also in low level control [40]. Fuzzy logic introduces the concept of degree of

objectivity, in the sense that it is possible for a statement to be partly true and partly

false. Moreover, the inference process can be written with linguistic rules not far from

simple inference sentences that humans might pronounce; this characteristics is of help in

coding the experience of non-expert operators. Finally, fuzzy logic is compatible with time

constraints that usually force the AI methods to provide sub-optimal solutions. AI falls

into the category of deliberative methods, the opposite concept is given by the reactive

methods [74], i.e., the sequence Think, Then Act is modified into Do not Think, Re-Act for

reactive systems. Reactive control connects the input to the output without using a Knowl-

edge Representation, and thus, without any internal state, by taking its inspiration from

the biological notion of stimulus-response. Another popular control method, described in

Chapter 2, is the so-called behavioral control. It is now usefull to clarify some aspects

concerning behavioral control and the supposed emergence of an overall, macroscopic, be-

havior by connecting several elementary behaviors. From an engineering perspective, as

the border patrol approached here, the control problem is given by its macroscopic defi-

nition, the successive decomposition into elementary behaviors is aimed at decomposing a

complex problem into simpler ones. Given some technological constraints, is then possible

to properly define the behaviors and, e.g., allow or not communication among robots.

On the other hand, in several biological or neurological studies, local interactions are first

modeled and the overall, macroscopic, behavior of the dynamic system is seen as emergent
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and analyzed for what it is. Somehow, there is a kind of dichotomy between a top-down

and a bottom-up behavioral approaches where we do consider appropriate to follow the

former. The above discussion can be easily extended to multiple robots performing a

given mission. It is worth noticing that, the border patrolling is inherently distributed

and that the use of several robots give to the mission the mandatory characteristics of

robustness and fault tolerance not achievable with the use of a single robot. According

to the literature on multiple robots [83], the problem approached here is close to what is

usually defined as swarm robotics, i.e., a large group or robots that interact implicitly.

The fact that the robots do not communicate explicitly does not mean that there is not

information exchange; the robots may communicate indirectly, or stigmergically, leaving,

intentionally or not, some traces in the environment. One example of this kind is given

by the ants, it seems that ants are able to count other ants encountered during the travel

and decide acordingly their direction.

3.4 A Centralized Solution to the Patrolling Prob-
lem

Before to illustrate the proposed decentralized solution to the patrolling problem, it is

worth showing as the problem of surveilling a linear border can be solved by properly

defining tasks functions in the centralized NSB framework. Consider N robots and a

G1 curve B (see [20]) whose parametric expression is pB(s) ∈ IR2where s ∈ [s0, sf ] is

the curvilinear abscissa. Let be pi ∈ IR2 the position of the i-th robot; for the sake of

simplicity, the following dynamic for the robot will be considered:

ṗi = vi, (3.1)

where vi ∈ IR2 is the control input homogeneous to a velocity. Our aim is to generate

the control inputs vi forcing the robots to approach the border, equally distribute along

the border and synchronously move along it, whatever is the shape of the border. One

possible solution consists in defining proper elementary task functions and then combining

them in the NSB framework. To this aim, three behaviors are needed.

Primary Behavior: Reach Frontier

The highest priority behavior allows the robot to reach the border. The first step consists

in defining a task function that takes into account the distance between thr robots and
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the border:

σ1 =
1

2N

N
∑

i=1

‖ pi − pB,i ‖
2, (3.2)

where pB,i ∈ IR2 is the closest point to the i-th robot belonging to the border B. The

corresponding jacobian of task (3.2) is:

J1 =
1

N

[

(p1 − pB,1)
T , (p2 − pB,2)

T , · · · , (pN − pB,N )T
]

∈ IR1×2N , (3.3)

Then, the control input:

v1 = JT
1

(

J1J
T
1

)−1
[σd,1 + k1(σd,1 − σ1)] , (3.4)

whith v = [vT
1 , vT

2 , · · · , vT
2 ]T ∈ IR2N , k1 > 0,. Clearly, by choosing σd,1 = 0, (3.4) ensures

the convergence to zero of the task function (3.2).

Secondary Behavior: Spread Along the Border

The secondary behavior ensures that the robots, once they are on the border, equally

spread along the border. Let be si the curvilinear abscissa corresponding to the point pi

, and consider the following task function:

σ2 =
[

(s2 − s1), (s3 − s2), · · · , (sN − sN−1)
]T

∈ IRN−1. (3.5)

The time derivative is:

σ̇2 =















−1 1 0 · · · 0

0 −1 1 · · · 0

· · ·

0 0 · · · −1 1





























ṡ1

ṡ2

...

ṡN















= Jsṡ, (3.6)

where Js ∈ IR(N−1)×N and ṡ ∈ IRN . Since ṡi = t(si)
T ṗi, where t(si) ∈ IR2 is the unit

vector tangent to the curve B at the point pB(si), supposed oriented in the positive sense

of the border, equation (3.6) can be rewritten as:

σ̇2 = Js















t(s1)
T

t(s2)
T

...

t(sN )T















ṗ = J2ṗ, (3.7)
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with jacobian J2 ∈ IR(N−1)×2N and p = [pT
1 , pT

2 , · · · , pT
2 ]T ∈ IR2N . Finally, to have

the robots equally spread along the border, the desired value of the task function is

σd,2 =
L

N
IN−1, being L lenght of the border and Ik a (k × k) square identity matrix.

Then, the control input corresponding to this task is:

v2 = JT
2

(

J2J
T
2

)−1
[K2(σd,2 − σ2)] , (3.8)

where K2 ∈ IR(N−1)×(N−1) is a positive definite matrix and σ̇d,2 = 0.

3.4.1 Lowest Prioriry Behavior: Patrol Border

After the robot have reached and equally spread along the border, they should syn-

chronously start patrolling the border. To this aim, it is enough the robot have the

same velocity component along the tangent vector to the border. Then, the output of the

third task is simply:

v3 = vp















t(s1)
T

t(s2)
T

...

t(sN )T















, (3.9)

where vp ∈ IR1 is the patrolling velocity.

By combining equations (3.4),(3.8), (3.9), the overall output control input is:

v = v̇1 + N1v̇
2 + N12v̇

3, (3.10)

where N i null projector matrix of task i, and N12 is the null projector of stacked jacobian

J12 =





J1

J2



.

Figure 3.3 shows the robot positions at different time instants in a simulation case study

with 15 robots, k1 = 5, K2 = 2I15−1. and vp = 10m/s. Robots are represented by green

points surrounded by a green circle; the continuous blue line represents the border to be

patrolled.

As it can be seen, the robot approaches the border (first and second frames) and equally

distribute along the border, starting the patrolling phase (third and fourth frames).

In Figure 3.4, the time history of the errors on the primary (top) and secondary task

(bottom) are represented; as aspected, they converge asymptotically to zero.
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Figure 3.3: Centralized patrolling. Sample frames at different time instants of robots
performing a patrolling mission.
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While the NSB has been proven to be effective for achieving patrolling task, it suffers

from some drawbacks. The first one is that it is highly centralized, i.e., a central unit is

required (a leader vehicle or an external computer) that acquires the state of all vehicles,

compute the velocity commands and send them back to the vehicles. Clearly, in addi-

tion to the communication problems that may arise (especially in large and/or occluded

environments), a failure of the central unit causes the failure of the mission. Moreover,

additional protocols are needed by the central unit to take into account the failure (ad-

dition) of one or more vehicles, in order to reduce (increase) the platoon and jacobian

matrices dimension.

3.5 Decentralized Solution to the Patrolling Task

According to our terminology, the term robot will denote a mobile machine, while agent

may denote both a human or a robot. The developed approach belongs to the swarm

robotic class. In swarm robotics, the achievement of the mission is the result of cooper-

ation of independent agents forming the swarm. In this approach, the overall behavior

is generally emergent, i.e., although each unit responds to external stimuli via simple be-

haviors and, generally, it has not a global cognition of the assigned mission, the couples

stimuli-behaviors are organized in such a way the cooperation implicitly raises from the

interaction among robots and with the environment. The main advantage of this approach

is its robustness to faults of the individual robots, as no predefined role is established and

reorganization can be automatically achieved. Moreover, this approach is clearly modu-

lar, since new emergent behaviors at swarm level can be obtained and, in general, more

complex missions could be accomplished, by properly defining new behaviors at the level

of the single unit. There are, of course, some drawbacks connected to this approach. For

example, there is not any formal method to generate, starting from the overall mission

description, a set of elementary couples stimuli-behaviors, whose interaction leads to task

accomplishment, especially in the presence of dynamically changing environments. More-

over, since the architecture is decentralized and, in general, the swarm operates in dynamic

environments, it is difficult to introduce performance indexes and compare these architec-

tures with other approaches (e.g., deliberative centralized approaches). In fact, traditional

benchmarking methodologies are based on the assumption of static environments. When

dealing with swarms of autonomous robots, however, this concept is candidate to fail,

since the environment, rather than the robots, is not repeatable (e.g., it is impossible to
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have the same environment conditions, the same obstacle positions, sensor readings and,

when required, the same human interaction).

3.5.1 Assumptions

The following assumptions are adopted to develop the proposed solution to the multi-robot

border patrol problem.

Linear Surveillance Problem

The general perimeter surveillance problem has been reduced to the linear surveillance

problem by assuming that the perimeter to be monitored is homeomorphic to a line and

can therefore be represented as a single path between two points. In addition, closed

perimeters are allowed. This assumption eliminates perimeters that are connected in a

web-like structure. However, an arbitrary connected perimeter can be reduced to a linear

perimeter by constructing a single tour that traverses all segments of the original perimeter.

In particular, borders that are G1 curve [20] has been considered; several algorithms exist

to obtain such a feature starting from natural border; an example is reported in [106].

Localization

We assume that each robot is able to localize itself in the environment and that it knows

a geometric description of the border or is able to detect it. Localization and, in general,

Simultaneous Localization and Mapping (SLAM) [108] are well established problems in

literature and will be not addressed in this thesis. To be more precise, each robot needs

only to estimate its position with respect to the border to be patrolled and other agents.

The way such a goal is achieved highly relies on the on-board sensors and on the practical

goals to be faced.

Visibility Range

To simulate real robots sensor capability, we establish that each robot has a visibility

range, where it recognizes the presence of other agents or the border itself. We assume,

for simplicity, that the visibility area is a circle around the robot. This is not a unrealistic

assumption, since it well approximate the case of pan-tilt-zoom camera sensors or laser

range finders.



Chapter 3. The Patrolling Mission 50

Safety Area

Each robot is characterized by its own safety area, where other agents are not allowed

to enter. Also in this case, we assume that the safety area is a circle around the robot,

clearly smaller than the visibility area. Such an assumption is necessary to avoid collision

among robots, particularly in the case of swarm systems where a large number of robots

may be present leading to conflicts and interferences.

Decentralization

Each robot is autonomous, it does not rely on a central computational unit; moreover,

distributed algorithms, such as consensus, that need an explicit exchange of information

are not allowed. As stated above, this is typical of swarm architectures where the overall

behavior is generally emergent, i.e., the couples stimuli-behaviors are organized in such

a way the cooperation implicitly raises from the interaction among robots and with the

environment.

Communication

Between robots is forbidden any kind of explicit communications. This assumptions is

devoted to supply more robustness to the algorithm. In fact, in scenarios where the

perimeter is very large or terrain causes line-of-sight problems, agents may frequently be

out of the communication range of the base station and neighboring vehicles. Additionally,

also in the case when a UAV or UGV is in the communication range of its neighbors, the

gathered data may require significant time to transmit (e.g., complete video footage).

Awareness

Each robot does not know the exact number of patrolling robot. However, it is aware of

the existence of other agents, that can be other patrolling robots, friends or enemy agents.

As described in the following, the awareness is implicitly taken into account by defining

proper behaviors, as for example, to avoid collisions

Performance

As stated in [5] or [32], the patrolling mission might be given in analytical form, and

a proper functional could be designed to be minimized by using a certain deterministic

algorithm. This is, however, not necessarily the optimal solution from a practical point

of view [5]. Let us consider, e.g., a functional that minimizes the time elapsed from two
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visits of a certain node; the definition of a node and the definition of an optimum criterion

makes the patrolling algorithm predictable. On the other hand, a pure random movement

of the robots is unlikely to be effective [62]. Although the presence of performance cri-

teria/indexes may be important, it is usually difficult to model the environment in order

to perform quantitative measurements; hence, the obtained results would necessarily be

confined to the specific environments considered. With these characteristics in mind, the

design of the control algorithm has been driven by the aim to transfer to the robots the

heuristics in performing a patrol mission, rather than approaching the problem from a

pure mathematical point of view.

3.6 The overall architecture

Being the approach completely decentralized, we need to design a control architecture for

the single robot. In Figure 3.5, a scheme of the overall designed architecture is given.

Behaviors

Supervisor

Actions
NSB

Actuators Sensors

Real Robot Simulator

Supervisor Level

Action Level

Robot Level

Figure 3.5: Overall Architecture.

As it can be seen, three layers have been individuated. Starting from the top, they are

the Supervisor Level, the Action Level and, finally, the Robot Level. The first two levels

are abstract. In particular, the Action Level, described in Section 3.6.1, defines the set

of actions the robot can undertake. Clearly, the set of actions depends on the mission

to achieve, involving different skills the robots are capable of. Once the set of actions is

defined, it is important that each robot chooses the proper action to perform, according

to its internal state and environmental information. To this aim, a supervisor needs to
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be designed. Different paradigms are possible, among them a Finite State Automata

and a Fuzzy Logic Supervisor, described in Section 3.6.4, have been designed and tested.

Finally, the Robot Level depends on the particular platform and mainly concerns with the

available sensors and actuators. A description of the platform used to test the proposed

approach will be given in Section 3.8.

3.6.1 Action Level

The basic idea is to define elementary behaviors and then combine them in a consistent

way to form a set of high-level actions (see Figure 3.6). This is consistent with the ado-

sensing/perception

Elementary
Behaviors

Commands

SupervisorActions

Figure 3.6: Behaviors Composition.

pted bottom-up approach in the action selection mechanism, since it allows the developer

to build an intelligent system on the basis of elementary components to better handle

complexity. The elementary behaviors and their combination in actions are defined in the

framework of the Null-space-based approach described in Chapter 2.

3.6.2 Elementary Behaviors definition

In the following the elementary behaviors will be mathematically defined and described.

They are based on the mission to achieve, identifying the elementary components required

by a typical patrolling missions.
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Reach Frontier

The first behavior to define in such a mission is the Reach Frontier Behavior (see Fig-

ure 3.7). Once activated, it allows the robot to reach the border to be patrolled. Then,

given the robot position pr ∈ R2 and the border B, pB ∈ R2 is the closest point to pr

belonging to B. The behavior reach frontier is simply defined as the following function

σrf














σrf = ‖pr − pB‖, σrf,d = 0,

Jrf = rT
rf , J

†
rf = rrf , N rf = I2 − rrfrT

rf ,

vrf = λrfrrf (−σrf ) ,

(3.11)

where the subscript “d” defined the desired value ot the behavior function, rrf = (pr − pB) /‖pr−

pB‖, Jrf is the task Jacobian, I2 ∈ R2×2 is the identity matrix, N rf is the null-space

projection matrix, λrf is a positive scalar gain and vrf is the desired robot velocity.

pr

vrf

pB

Figure 3.7: Graphical representation of the Reach Frontier Behavior.

It is worth noticing that the computation of the closest point pB to the robot is needed.

In particular, a discretization of the border might be required or a proper analytical ap-

proximation [5]

Patrol Frontier Clockwise

Once the robot is close to the border, it is important the robot moves according to the

border shape. To this aim, given the border B and a point pB belonging to B, rcw is

the unit vector tangent to the border in pB and oriented in the clockwise direction of the

border. The behavior is, then, directly defined as:






vcw = λcwrcw,

N cw = I2 − rcwrT
cw,

(3.12)

wherevcw is the velocity vector encoding the behavior, rcw plays the role of the task Ja-

cobian, N cw is the null-space projection matrix and λcw is a positive scalar gain. It is
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pr

vcw

pB

Figure 3.8: Graphical representation of the Patrol Clockwise Behavior.

worth noticing that this behaviors simply allow the robot to move accordingly the border

tangent no matter the robot position is and, in particular if the robot is or not on the

border (Figure 3.8).

Patrol Frontier Counter-Clockwise

This case is formally similar to the previous one with the obvious difference that the vector

tangent to the border is oriented in the counter-clockwise direction.The behavior is then

directly defined as:






vccw = λccwrccw,

N ccw = I2 − rccwrT
ccw,

(3.13)

where rccw plays the role of the task Jacobian, N ccw is the null-space projection matrix

and λccw is a positive scalar gain.

Teammate Avoidance

In a multi-robot system, it is important to avoid collisions among robots. To this aim,

let be pr the robot position, pt the position of the closest teammate to the robot and ds

the safety distance, i.e., the radius of the circular safety area. The behavior Teammate

Avoidance is defined as:














σta = ‖pr − pt‖, σta,d = ds,

J ta = rT
ta, J

†
ta = rta, N ta = I2 − rtar

T
ta,

vta = λtarta (ds − σta) ,

(3.14)

where the subscript “d” defined the desired value of the behavior function, rta = (pr − pt) /‖pr−

pt‖, J ta is the task Jacobian, N ta is the null-space projection matrix and λta is a positive

scalar gain and vta is the desired robot velocity.
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pr
vta pt

Figure 3.9: Graphical representation of the Teammate Avoidance Behavior.

In a few words, this behavior allows the robot to move in order to keep the other

teammate on the border of its own safety area (see Figure 3.9).

Friend Avoidance

A friend is an agent that moves independently from other agents and that is allowed

to cross the border. Therefore, when a friend tries to cross the border, patrolling agents

should keep a desired distance from it without affecting its motion. This behavior is similar

to the Teammate Avoidance behavior in Figure 3.9, then, given the robot position, pr, the

friend position, pf , and a safety distance ds, the behavior friend avoidance is defined as:















σfa = ‖pr − pf‖, σfa,d = ds,

Jfa = rT
fa, J

†
fa = rfa, N fa = I2 − rfar

T
fa,

vfa = λfarfa (ds − σfa) ,

(3.15)

where the subscript “d” defined the desired value ot the behavior function, λfa is a posi-

tive definite diagonal matrix, Nfa is the null-space projector matrix and vfa is the desired

robot velocity. Similarly to the previous case, this behavior, keeping the robot far form

the friend agent, allows it to move without being affected by patrolling agents.

3.6.3 Actions definition

The elementary behaviors defined in Section 3.6.2 are used to build the actions, i.e., more

meaningful behaviors suitable for the given mission. In the following, analytical details of

the actions defined for the patrolling problem are provided. As stated above, these actions
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are obtained by combining the elementary behaviors. This combination is obtained via

NSB in order to obtain a predictable output and, thus, requiring a priority assignment

among the elementary behaviors.

Action Reach Frontier (ARF)

This action allows the robot to reach the border, e.g., when it is far from it. In this case,

the definition of the action simply coincides with the elementary behavior Reach Frontier :

vArf = vrf . (3.16)

As will be clear later, this action is usefull when the robot is particularly far from the

border. In such a situation, the only objective of the robot is to reach the frontier before

starting other behaviors; hence, no secondary tasks are present.

Action Patrol Clockwise (APCW)

This action allows the robot to stay on the border, while covering it in the clockwise

direction. To this aim two behaviors are needed. The primary behavior is Reach Frontier,

the secondary one is Patrol Clockwise, leading to

vApcw = vrf + N rfvcw. (3.17)

By activating this action the robot is able to reach or keep on the border while patrolling

it.

It is worth noticing, that, being the two elementary behaviors compatible in the NSB sense

(since the two task velocities are orthogonal), the priority of behaviors can be exchanged.

In Figure 3.10, a typical robot motion under the effect of Action Patrol Clockwise is shown.

Figure 3.10: Typical robot motion under the effect of Action Patrol Clockwise.
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Action Patrol Counter-Clockwise (APCCW)

This case is formally similar to the previous, with the obvious difference to properly

consider the Patrol Frontier Counter-Clockwise behavior. Then, the output velocity of

this action is

vApccw = vrf + N rfvccw. (3.18)

Action Keep Going (AKG)

This action allows the robot to stay on the border, while covering it in the clockwise or

counter-clockwise direction. This action is obtained by combining the Reach Frontier and

the Patrol Frontier Clockwise (Patrol Frontier Counter-Clockwise) behaviors in the NSB

sense:

vAkg = vrf + N rfvp, (3.19)

where vp the vector tangent to the border at the closest point belonging to the border.

The versus of the vector vp, is decided according to some criteria. For example, it can be

varied depending on the value of a random variable every T seconds and set equal to vcw

or vccw. This can be useful to confer some unpredictability to the mission.

Action Teammate Avoidance (ATA)

When a teammate vehicle enters the safety area of the robot, it needs to avoid the team-

mate, while trying to stay on the border or to reach it; in this way, it can restart the

patrol mission once the teammate-vehicle is far enough. This action can be obtained by

combining the behaviors Teammate Avoidance and Reach Frontier in the NSB sense:

vAta = vta + N tavrf . (3.20)

In Figure 3.11, it is depicted a typical path generated by this action.

It is woth noticing, that differently from the previous actions, is not possible to ensure

task compatibility in all situations. An example of such situation is represented by a

teammate that is exactly between the robot and the border; in this case, the velocity

component of the secondary task (reach frontier), will be totally cut off. In general,

only the velocity components of the secondary task that do not conflict with the primary

behavior will be executed, leading to the robot moving on the the border of the teammate

safety area (Figure 3.11).
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pr

pt

pB

Figure 3.11: Graphical representation of the Action Teammate Avoidance Behavior;
pr is the poition of the vehicle, pt the position of the teammate closest to the robot,
pB the point of the border closest to the robot

Action Friend Avoidance (AFA)

The Actio Avoid Teammate is similar to the Action Friend Avoidance. In the case a friend

vehicle is in the safety area, the robot needs to avoid the vehicle, while trying to stay on the

border, so that it can restart the patrol mission once the friend vehicle is far enough. This

action can be obtained by combining the Friend Avoidance and Reach Frontier behaviors

vAfa = vfa + Nfavrf . (3.21)

Being Reach Frontier the secondary task, only its velocity components that do not conflict

with the primary task will be executed. It is worth noticing that, when more than one

friend is in the safety area of the robot, it can be taken into account by generalizing (3.21)

in the following way:

vAfa(t) = v1
fa + N1

fa(v
2
fa + N2

favrf ), (3.22)

where the closer is the friend, the higher is the priority. Also in this case, it is not possible

to ensure the task compatibility between the two behaviors in all situations.

3.6.4 The Supervisor Level

According to the assumptions reported in Section 3.5.1, for the sake of robustness and fault

tolerance, each robot decides the next action to be performed based only on its sensing

capabilities. Therefore, the set of actions (see Section 3.6.3) defines only the system’s skills

for reacting to situations encountered in its environment. Hence, the problem of selecting

the action needs to be executed next has to be considered. Although several paradigms

might be used, two appealing tools are represented by Finite State Machines (FSMs) and

Fuzzy Logic Engines; they will be described in the following.
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3.6.5 Finite State Machine Supervisor

An efficient and simple way to achieve a decisional process is based on the use of finite state

automata playing the role of Supervisor. Finite State Machine action selection mechanisms

assume that [23]:

• there are only a limited number of salient situations the agent can find itself in,

• these situations are mutually exclusive,

• actions can easily be mapped to situations.

While these assumptions may seem unrealistic, they have been usefully applied in suffi-

ciently abstract models. The clearest example is probably the Conways Game of Life [46],

a very early ALife system.

Using this kind of paradigm, it is better to think about agents rather than environments.

To be more precise, agents tend to be simpler than there environment, i.e., they tend to

have less possible behaviours than possible external situations. Thus, it is simpler to write

code for actions and not for events. To build a Finite State Machine, two sets are to be

determined:

• the sets of the states the agent can be in,

• the sets of causes forcing the agent to change its state.

Again, the main assumptions are that both states and transitions can be enumerated and

that they are mutually exclusive. Most agents, depending on the applications, have more

than two possible actions. In this case, if there are a small number of possible transi-

tions from each action to the next, then FSMs represent a suitable selection mechanism.

However, if the environment is very dynamic and unpredictable and the application very

complex, then there may be transitions from every state to every other state. The number

of transitions grows quadratically, since all N nodes must have N − 1 ingoing transitions.

It would be better to have a way to code action selection not growing faster than the num-

ber of possible actions. However, in many practical application not all state transitions

are feasible, then, we really only need to specify the transitions that the agent can make.

A possible structure of the supervisor [68] that select the proper action is shown in

Figure 3.12.

As it can be seen, it is arranged in a hierarchical way by defining states and sub-states in

the following way:
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Figure 3.12: Sketch of the Supervisor.

• State MS0: If one or more friend agents are in the safety area then Action Avoid

Friend is active else

– State MS1: If the distance between the robot and the border is larger than

the Visibility Range and

→ no teammate is in the safety area then Action Reach Frontier is active,

→ one or more teammates are in the safety area then Action Avoid Team-

mate is active.

– State MS2: If the distance between the robot and the border is smaller than

the Visibility Range and larger than a given Threshold, and

→ no teammate is in the safety area then Action Keep Going is active,

→ one or more teammates are in the safety area then Action Avoid Team-

mate is active.

– State MS3: If the distance between the robot and the border is smaller than

a given Threshold and

→ no teammate is in the visibility range then Action Keep Going is active,

→ there is a teammate on the left then Action Patrol Clockwise is active,



Chapter 3. The Patrolling Mission 61

→ there is a teammate on the right then Action Patrol Counter-Clockwise

is active.

At each time instant the robot can be in one of the macro-state MS0, MS1, MS2 or

MS3. State MS0 corresponds to the situation where a firend agent is in the safety area

of the patrolling robot. In this case Action Avoid Friend is active. On the contrary, if no

friend agent is present, the robot can be in the state MS1, MS2, MS3 which correspond,

respectively, to the condition in which the robot is far from the border, the robot is not

far from the border (but its distance is still large) and the robot is close to the border.

The main reason behind this distinction is that in the state MS1 the robots try to reach

the border (and avoid the teammates), in the state MS2 the robots behave as they are

patrolling the border (and avoid the teammates), in the state MS3 the robots perform

the patrolling mission and do not allow robots approaching the border to influence their

motion; in the last state, avoidance of other teammates patrolling the border is achieved

by activating the actions Patrol CW and/or Patrol CCW.

3.6.6 Fuzzy Supervisor

In addition to the Finite State Automata described in the previous section a Fuzzy Logic

Supervisor, has been designed [70]. A Fuzzy Logic Engine is in charge of encoding an

expert’s knowledge into a set of linguistic rules which are smoothly interpolated; the

result is then defuzzified to provide a crisp actuation output. Each rule is specified as

a properly shaped function and assigned to a proper range of input variable. The main

advantage presented by this technique is, of course, the possibility that the solution to the

problem can be cast in terms that human operators can understand, so as their experience

can be incorporated into the design process. This makes it easier to automate tasks that

are already successfully performed by humans, delete or add new linguistic rules. With

regards to the i-th vehicle, the Fuzzy Inference System (FIS), based on the local sensors

information, calculates the degree of activation αi
j ∈ [0, 1] of j-th action (j = 1, 2 . . . n),

based on a classical Mamdami fuzzy type system [40]. As it may happen that sensory

data match with several behavior rules (i.e., the conditional part of the fuzzy rules), more

than one action might fire at the same time; hence, an arbiter should be adopted in order

to deal with such a situation. However, the FIS is conceived in such a way that only one

action may fire at each time step, since the arbiter selects the j-th action characterized by

the maximum activation level αi
j .
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The three crisp inputs of the FIS are the distance from the border di
b, the distance from

the closest teammate di
ct, and a variable γi whose expression is:

γi =



















0 if dc
b > θth2

θth2 − dc
b

θth2 − θth1
λi if θth1 ≤ dc

b ≤ θth2

1 if dc
b < θth1

(3.23)

where dc
b is the distance from the border of the closest teammate ( indicated by the

subscript c) and θth1 and θth2 are given thresholds. Once a curvilinear abscissa on the

border is established, si represents the value of curvilinear abscissa of the point on the

border closest to the i-th vehicle. The variable λi is -1 if sc < si, 1 otherwise. Therefore,

γi is zero if the closest teammate is far from the border, negative if it is close to the

border and sc < si, positive if it is close to the border and sc ≥ si. In sum, γi represents

the minimal information about the closest teammate needed to describe its status and its

position with respect to the i-th vehicle. Depending on the values of γi and di
ct, the FIS

can decide to avoid the teammate, reverse its motion direction, or keep its actual motion

state.

As stated before, the outputs of the FIS are the actions degrees of activation. The

linguistic variables corresponding to the crisp inputs are

• DistanceFromBorder = {low, medium, high},

• DistanceFromNeighbor = {low, medium, high},

• NeighborState = {PatrollingOnMyLeft, notPatrolling, PatrollingOnMyRight},

while the output linguistic variables are

• ReachFrontierLevel (RFL) = {low, medium, high},

• KeepGoingLevel (KGL) = {low, medium, high},

• PatrolClockwiseLevel (PCWL) = {low, medium, high},

• PatrolCounterClockwiseLevel (PCCWL) ={low,

medium, high},

• AvoidTeammateLevel (ATL) = {low, medium, high},

• AvoidFriendLevel (AFL) = {low, high}.
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It is worth noticing that, for an open border, also the distance from the left and right end

of the border need to be considered, so as to properly change the patrolling direction. As

membership functions, trapezoids and triangles have been chosen, together with min-max

method for and-or and implication-aggregation operations, and centroid as defuzzification

method. In Figure 3.13 are shown the chosen input and output membership functions.
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Figure 3.13: Membership functions of the input and output linguistic variables.

The number of possible states of the Supervisor is 36; the fuzzy rules depending on the

state of DistanceFromFriend and DistanceFromBorder linguistic variable are reported in

Tables 3.1-3.4.

As in the case of the FSM supervisor, the main reason of this distinction is that,

when there is a friend close to the robot, then the highest priority action is Avoid Friend

Action. On the contrary, when no friend is in the vicinity of the patrolling robot and the
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DistanceFromFriend is low

DistanceFromNeighbor low medium high
NeighborState

PatrollingOnMyLeft

AFL high
ATL low
RFL low
KGL low
PCWL low
PCCWL low

AFL high
ATL low
RFL low
KGL low
PCWL low
PCCWL lowaaa

AFL high
ATL low
RFL low
KGL low
PCWL low
PCCWL low

notPatrolling

AFL high
ATL low
RFL low
KGL low
PCWL low
PCCWL low

AFL high
ATL low
RFL low
KGL low
PCWL low
PCCWL lowaaa

AFL high
ATL low
RFL low
KGL low
PCWL low
PCCWL low

PatrollingOnMyRight

AFL high
ATL low
RFL low
KGL low
PCWL low
PCCWL low

AFL high
ATL low
RFL low
KGL low
PCWL low
PCCWL lowaaa

AFL high
ATL low
RFL low
KGL low
PCWL low
PCCWL low

Table 3.1: Supervisor Linguistic Rules in the case of a friend agent in the visibility
range

DistanceFromFriend is high and DistanceFromBorder is high

DistanceFromNeighbor low medium high
NeighborState

PatrollingOnMyLeft

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL low

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL lowaaa

AFL low
ATL low
RFL high
KGL low
PCWL low
PCCWL low

notPatrolling

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL low

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL lowaaa

AFL low
ATL low
RFL high
KGL low
PCWL low
PCCWL low

PatrollingOnMyRight

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL low

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL lowaaa

AFL low
ATL low
RFL high
KGL low
PCWL low
PCCWL low

Table 3.2: Supervisor Linguistic Rules in the case of a friend agent not in the
visibility range and robot far from the border
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DistanceFromFriend is high and DistanceFromBorder is medium

DistanceFromNeighbor low medium high
NeighborState

PatrollingOnMyLeft

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL low

AFL low
ATL high
RFL low
KGL low
PCWL medium
PCCWL low

AFL low
ATL low
RFL low
KGL high
PCWL low
PCCWL low

notPatrolling

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL low

AFL low
ATL medium
RFL low
KGL high
PCWL low
PCCWL low

AFL low
ATL low
RFL low
KGL high
PCWL low
PCCWL low

PatrollingOnMyRight

ATL high
RFL low
KGL low
PCWL low
PCCWL low

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL medium

AFL low
ATL low
RFL high
KGL low
PCWL low
PCCWL low

Table 3.3: Supervisor Linguistic Rules in the case of a friend agent not in the
visibility range and robot at medium distance from the border

DistanceFromFriend is high and DistanceFromBorder is low

DistanceFromNeighbor low medium high
NeighborState

PatrollingOnMyLeft

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL low

AFL low
ATL low
RFL low
KGL low
PCWL high
PCCWL lowaaa

AFL low
ATL low
RFL low
KGL high
PCWL low
PCCWL low

notPatrolling

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL low

AFL low
ATL low
RFL low
KGL high
PCWL low
PCCWL lowaaa

AFL low
ATL low
RFL low
KGL high
PCWL low
PCCWL low

PatrollingOnMyRight

AFL low
ATL high
RFL low
KGL low
PCWL low
PCCWL low

AFL low
ATL low
RFL low
KGL low
PCWL low
PCCWL highaaa

AFL low
ATL low
RFL low
KGL high
PCWL low
PCCWL low

Table 3.4: Supervisor Linguistic Rules in the case of a friend agent not in the
visibility range and robot close to the border
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DistanceFromBorder is high the robots should only try to reach the border avoiding other

teammates, when the DistanceFromBorder is medium the robots can start to patrol the

border clockwise or counterclockwise, but always avoiding other teammates; finally, when

the DistanceFromBorder is low, the robots are performing the patrolling mission and do

not allow robots approaching the border to influence their motion; this is helpful when a

large number of vehicles are trying to reach the border; in this case, avoidance of other

teammates patrolling the border, is achieved by activating the actions Patrol CW and/or

Patrol CCW, depending on the values of the parameter γi and on the distance from the

teammate. It can be noticed that in any case, for security reasons, if the distance between

robots is low, the Action Avoid Teammate is activated.

3.7 Simulations

Several simulations on closed and open border, with different sizes and shapes, have been

carried out by using both Matlab [48] and Player/Stage [114] environments. As both the

supervisors present the same results, in the following no distinction will be made abou the

FMS or Fuzzy supervisors.

3.7.1 Simulations in presence of a large number of robots

In order to test the approach in the presence of a large number of robots in the team,

a free environment with a closed border has been considered in a numerical simulation.

The team is composed by 60 robots, with visibility and safety area equal to 20 m. The

matrix gains in eqs. (3.11)–(3.14) have been chosen as λrf = 5I, λcw = 8I, λccw = 8I, λcw

and λta = 10I. No friends vehicles are present in this first simulation. Figure 3.14 shows

the robot positions at different time instants. Robots are represented by green points

surrounded by their visibility ranges and safety areas; the continuous blue line represents

the border to be patrolled. In the first frame, all robots are trying to reach the border,

while avoiding teammates. In the second and third frames, some robots reach the border

and start patrolling. In the fourth frame the robots reach a maximum density on the

border without being affected by other vehicles trying to reach the border; at the same

time, by properly selecting the actions Action Patrol CW and Action Patrol CCW ), they

keep themselves at the safe distance from other robots on the line.

It is useful to remark that the approach prevents robots from collisions. To this aim, in

Figure 3.15 the time history of the minimum value of the distances among all the possible
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Figure 3.14: Sample frames at different time instants of robots performing a pa-
trolling mission.

robot couples is depicted, i.e.:

dr,min(t) = min
∀i6=j i,j∈Nr

‖ pi,r(t) − pj,r(t) ‖, (3.24)

where pi,r(t) is the position of i-th robot at instant t, and Nr is the set of patrolling robots.

As it can be seen from Figure 3.15, even in the case of a large number of robots, col-

lisions are prevented, moreover the structure of the supervisor (both the state automata

and fuzzy logic) avoid interference situations. In fact, the fourth frame in Figure 3.14

shows that robots reaching the border do not affecting robots already on the line (i.e.,

performing the patrolling mission). On the contrary, in the case of interferences, increas-

ing the number of robots would not cause any benefit to the overall mission, but would,

in certain cases, cause the mission failure.

3.7.2 Simulations in presence of friend vehicles and a large
number of faults

In the following, Matlab simulations are briefly described so as to show the algorithm

behavior in the presence of large number of robot faults and presence of friend agents [69].
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Figure 3.15: Time history of minimum of distances between all possible robot cou-
ples.

Videos of simulations are available at [3]. Also in this case, the team is composed by 60

robots, with a visibility and safety area equal to 20 m. The scalar gains are the same

as in the previous case. Figure 3.16 shows the robot positions at different time instants.

Robots are represented by points surrounded by their visibility range and safety area

(a continuous green circle); while the continuous thick line represents the border to be

patrolled. As in the previous case, in the first frame, robots are randomly distributed and

they are trying to reach the border activating the Action Reach Frontier, while avoiding

other teammates. In the second frame, some robots have reached the border and started

to perform the patrolling mission activating the Actions Keep Going and Patrol Clockwise

(or Patrol Counterclockwise). Friend agents, represented by cross markers surrounded

by their safety area (a dash-dot circle of 20m radius), start to approach the border and

cross it (third frame) without collisions with patrolling robots. Then, in the fourth frame

friends gain the center of the bordered zone; in this situation, patrolling robots are not

more affected by friends motions.

As can be noticed, the effective definition of the behaviors and actions allows collisions

avoidance even in case of high robot density and friend agents. To this aim, in Figure

3.17 the minimum value over time of the distances among all the possible robot couples

is depicted, i.e.:

dr,min(t) = min
∀i6=j i,j∈Nr

‖ pi,r(t) − pj,r(t) ‖, (3.25)
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Figure 3.16: Sample frames at different time instants of robots performing a pa-
trolling mission.

where pi,r(t) is the position of i-th robot at instant t, and Nr is the set of patrolling robots.
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Figure 3.17: Minimum of distances between all possible robot couples.

In the same way, in Figure 3.18 it is shown the minimum distance over time of all the

possible couples robot-friend, i.e.:

df,min(t) = min
∀i∈Nr,j∈Nf

‖ pi,r(t) − pj,f (t) ‖, (3.26)

where pj,f (t) is the position of j-th friend agent at instant t and Nf is the set of friend

agents.
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Figure 3.18: Minimum of distances between all robot-friend couples.

Figures 3.17 and 3.18 clearly show that the control is capable of avoiding collisions,

and thus the mission is safely performed.

Finally, the performance in the presence of multiple robot faults are tested. Namely,

the same patrolling mission is executed, but some of the patrolling robots fail (first frame

of Figure 3.19). These failures are virtually represented by robot disappearances from the

scene. The last frame shows the new situation, where the robots, without any external

influence, redistribute along the border, thus fulfilling the mission objective.
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Figure 3.19: In left plot several robots fails. In the right plot remaining robots
automatically redistribute around the border.

3.8 Experiments

In order to test the effectiveness of the approach, the control scheme described in Sec-

tion 3.6 has been implemented on a real setup at the Distrubuted Intelligence Laboratory
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of University of Tennessee, composed by three Pioneer-2DX mobile robots (in Figure 3.20).

3.8.1 The Pioneer 2DX robot

The Pioneer-2DX robot, in Figure 3.20 (left), has a 44 cm x 38 cm x 22 cm aluminum

body with 16.5cm diameter drive wheels and autonomy of 18-24 hours; it is manufactured

by ActivMedia Robotics [4].

Pioneer 2DX is differentially steered; the two motors use 38.3:1 gear ratios and contain

500-ticks encoders. This differential drive platform is non-holonomic and can rotate in

place moving both wheels, or it can swing around a stationery wheel in a circle of 32cm

radius. A rear caster balances the robot.

On flat floor, the Pioneer-2DX can move at speeds of 16 cm/s. At slower speeds it can

carry payloads up to 23kg, including additional batteries and all accessories, and must be

balanced appropriately for effective operation of the robot. In addition to motor encoders,

the robot base includes eight ultrasonic transducers (range-finding sonar) arranged to

provide 180-degree forward coverage at a sampling rate of 25Hz. They can read ranges

from 15cm to approximately 7m.

The computational board includes a 32-bit RISC-based controller running Linux. On the

microcontroller, there are 8 digital input and 8 digital output ports and 1 dedicated A/D

port; 4 digital input ports can be reconfigured as A/D input and 4 digital output ports

can be reconfigured as PWM outputs.

Additional hardware includes ethernet based communications, a wifi radio turret for re-

mote control, a Pan-Tilt-Zoom (ptz) color camera and a laser rangefinder. Laser rangefind-

ers contain a non-contact laser measurement system used for applications involving objects

measurement, localization, monitoring, vehicle guidance and collision control. In particu-

lar, the laser rangefinder mounted on the Pioneer-2DX robots is a SICK LMS 200, char-

acterized by a 180 degrees coverage, a 10 mm resolution, 0.25 degrees minimum angular

resolution, a scanning frequency up to 75Hz, data transfer in real time, and, if properly

configured, it is capable of a range up to 80 m.

3.8.2 Robot Model

In Figure 3.21, the kinematic structure of the Pioneer 2DX has been reported . Each indi-

vidual wheel contributes to the robot motion and, at the same time, imposes constraints

on it. Thus, the constraints of each wheel combine to form the constraints of the overall
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Figure 3.20: The experimental setup at Distributed Intelligence Laboratory of Uni-
versity of Tennessee. On the left: a zoom of a Pioneer-2Dx mobile robot. On the
right: the whole setup.
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Figure 3.21: Top-view sketch of a differential-drive mobile robot with relevant vari-
ables.

To model the motion of the mobile robot, the constraints and the forces of each wheel

must be expressed respect to a proper and consistent reference frame. Thus, to specify

the robot position, it is possible to consider the robot as a rigid body on wheels operating

on an horizontal plane; it is characterized by three Degrees Of Freedom (DOF) (two for

the horizontal position in the plane and one for the orientation around a vertical axis).

Then, the position of the robot can be specified by the relationship between a global
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inertial reference frame and a body fixed reference frame. In Figure 3.21 the axes XI and

YI define the inertial reference frame, while the axes XR and YR define the body-fixed

reference frame. The position of the robot is specified by the coordinates x and y of the

point pIp in the { O, XI , YI} reference frame and by the angle θ between the axes XI

and XR

pI =









x

y

θ









.

It can be easily recognized, that the differential-drive robot is a non-holonomic system

characterized by the non-integrable constraint:

ẋ sin(θ) − ẏ cos(θ) =
[

sin(θ) cos(θ) 0
]









ẋ

ẏ

θ̇









= A(p)ṗ = 0, (3.27)

stating that velocity components along the wheels’ axis are not feasible. Feasible velocities

can be obtained as a linear combination of a basis of the null space of matrix A(p):
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





, (3.28)

where v and ω are, respectively, the linear and angular velocity of the robot. In case of

differential-drive robots, assuming that the two wheels roll without slipping on the floor,

linear and angular velocities are related to the wheels velocities in the following way:







v = (ωrr + ωlr)/2,

ω = (ωrr − ωlr)/l,

where ωl, ωr are the angular velocities of the left and right wheels, respectively, r is the

wheels radius and l is the distance between the wheels.

It is worth noticing that the two-wheel differential-drive robot has a kinematic structure

analogous to the unicycle, i.e., an homogeneous disk that rolls without slipping on an

horizontal plane (see Figure 3.22). The unicycle, in fact, has a kinematic model described

by the equation (3.28). The control of the unicycle poses several challenges. In fact, two

main tasks are generally required: in point-to-point motion, a desired goal conguration

must be reached starting from a given initial conguration, while, in trajectory following,
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Figure 3.22: Vertically rolling disk.

a reference point on the robot must follow a trajectory in the Cartesian space (i.e., a

geometric path with an associated timing law) starting from a given initial conguration.

The execution of these tasks can be achieved using either feedforward or feedback control

(or a combination of the two); obviously, the latter has to be preferred in view of its in-

trinsic degree of robustness. When executed under a feedback strategy, the point-to-point

motion task leads to a regulation control problem. Instead, trajectory following leads nat-

urally to a tracking problem, which may be asymptotic in the presence of an initial error.

Remarkably, such systems cannot be stabilized at a point by smooth feedback [39]. Then,

as a consequence, tracking is easier than regulation for a nonholonomic vehicle. How-

ever, several alternative approaches have been proposed for regulation of nonholonomic

systems [97], [55], [89].

Since our aim is not to solve the control problem for non-holonomic systems, a different

and simpler solution needs to be found. To this aim, it is worth considering that we are

not interested in assigning the orientation θ of the robot, then, the system to be controlled

becomes





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ẏ
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. (3.29)

Matrix G(θ) is clearly singular for any value of θ; hence, not all velocity commands

generated by the actions have corresponding robot’s linear and angular velocity. A simple

solution to the above problem consists in considering a different robot reference frame that

is not on the wheels’ axis (see Figure 3.23).

By choosing as origin of the new reference frame a point pb, whose distance is b from

the wheels’ axis, the kinematic model of the robot becomes:

ṗb =





ẋb

ẏb


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ω
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

v

ω



 , (3.30)
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Figure 3.23: Top-view sketch of a differential-drive mobile robot with relevant vari-
ables.

in this way Gb(θ) is a full-rank matrix independently on the the value of θ. Clearly, small

value of b can result in an high value of ω, while high value imply a control point pb too

far from the robot’s center of mass. Taking into account the velocities generated by the

control algorithm, the dimensions and the maximum linear and angular velocities of the

Pioneer 2DX robots, b has been chosen equal to 10cm. This value prevents from saturation

of the actuators and ensure a control point inside the robot chassis.

3.8.3 The Control Software

The software used to implement the proposed architecture is Player/Stage environment [114],

based on a client/server architecture.

Player/Stage is an advanced robotics simulation and interface platform. It provides both

the tools to simulate (Stage software), as well as to communicate to the robotics harware

(player software). Player is mainly a network server for robot control, and communicates

with on board hardware devices by using device drivers. In addition, it provides clean

and simple interfaces (proxies) to the robot’s sensors and actuators (see Figure 3.24).

Some proxies and drivers provide complex functionalities, such as local path planning and

vision, and provides to its clients standard device interfaces. For example, Player may

use the SICK LMS-200 and Pioneer hardware devices, and provide to clients ”laser” and

”position”, ”sonar”, general interfaces. This allows clients to be portable to other robots.
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Player also provides transport mechanisms allowing data to be exchanged among drivers

and control programs that are executing on different machines. The most common mech-

anism in use now is a client/server TCP socket-based transport. The drivers run inside

the player server, and the user’s control program runs often on an other machine as a

client to that server. Client Libraries are available in various languages to facilitate the

development of such control programs(C, C++, Java).

Figure 3.24: Structure of Player control sofwtare.

Stage software allows to test the control algorithms in simulation before running them

on a real setup. Stage is a 2D multiple-robot simulator that simulates a population of mo-

bile robots, sensors and objects in a two-dimensional bitmapped environment. It provides

fairly simple and computationally cheap models of lots of devices, rather than attempting

to reproduce any device with great fidelity. Typically, Stage is designed in such a way

that the controll software designed in Player cannot see the difference between the real

robot devices and their simulated Stage equivalents. Generally, very little modifications

are needed to transform simulated controllers to the their experimental counterparts.

3.8.4 Robot Localization

As stated in Section 3.5.1, the robot needs to localize in the environment, in order to

achieve the mission. To achieve such a goal, a localization algorithm needs to be adopted,

provided that a map of the environment is available. Among the different approaches

available in the literature, one of the most effective has been developed by Fox et al. by

using particle filters [45].

In the used setup, in fact, localization is achieved by means of odometry and laser range

readings combined in a particle filter algorithm. Although an extensive literature exists

about this kind of algorithms, a brief description is given in the following. Even the most
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straightforward implementation of particle filters exhibits excellent results for the position

tracking and the global localization problem. Extensions of the basic algorithm have led

to excellent results on the kidnapped robot and the multi-robot localization problem.

The power of particle filters is that, in contrast to the widely used Kalman filters, they

can approximate a large range of probability distributions, not just normal distributions.

Once a robot’s belief is focused on a subspace of the space of all poses, particle filters

are computationally efficient, since they focus their resources on regions in state space

with high likelihood. At the basis of particle filters, there are the Bayes filters. They

assume that the environment is Markovian, i.e., past and future data are conditionally

independent if the current state is known. In particular, the key idea is to estimate the

posterior probability density over the state space conditioned on the data. In robotics this

posterior density is typically called the belief (Bel). Two types of data are distinguished:

perceptual data, such as laser range measurements, and odometry data, or controls, which

take into account information about robot motion. Denoting the former by y and the

latter by u, the belief on a generic state xk ∈ IRn, at sample k, is:

Bel(xk) = p(xk|yk, uk−1, yk−1, · · · , u0, y0), (3.31)

where p(·) is the probability density operator. In the localization problem, xk contains the

robot’s position, hence, equation (3.31) states that the propability of the robot’s position

depends on the time history of perceptual and control data. Pratically, Bayes filters

estimate the belief recursively, and the initial belief characterizes the initial knowledge

about the system state. Observing that (3.31) can be rewritten as

Bel(xk) =
p(yk|xk, uk−1, · · · , u0, y0)p(xk|uk−1, · · · , u0, y0)

p(yk|uk−1, · · · , u0, y0)
, (3.32)

using the Markov assumption p(yk|xk, uk−1, · · · , u0, y0) = p(yk|xk) (this is the sensor

model) and posing η = 1/p(yk|uk−1, · · · , u0, y0) (normalizing factor), equation (3.31) is

equivalent to

Bel(xk) = η p(yk|xk)

∫

p(xk|xk−1, uk−1, · · · , y0)p(xk−1|uk−1, · · · , y0)dxk−1. (3.33)

Finally, since for the Markov assumption is p(xk|xk−1, uk−1, · · · , y0) = p(xk|xk−1, uk−1)

(vehicle model), equation (3.33) becomes:

Bel(xk) = η p(yk|xk)

∫

p(xk|xk−1, uk−1)Bel(xk−1)dxk−1, (3.34)
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that, clearly, has a recursive structure.

As the state x is generally continuous, the idea of particle filters algorithms is to approx-

imate the belief Bel(x) by a set of n samples, called particles:

Bel(xk) ≈
n

∑

i=1

f i
k−1δ(xk − xi

k−1), (3.35)

where δ is the Dirac function, xi is a particular sample (of the state) and f i is a positive

number named importance factor that take into account the importance of each sample

(
∑n

i=1 f i = 1). Two problems need to be solved: the generation of the particles, and the

update of the importance factors. Different approaches exist to solve these problems, one

of them consists in the following three steps to be recursively exectuted [12]:

• uniformly extract n samples xi
k from the distribution

∑n
i=1 f i

k−1p(xk|x
i
k−1),

• set the importance factor as f i
k = p(yk|x

i
k),

• normalize importance factors as: f i
k = f i

k/
∑n

i=1 f i
k

The most important property of the particle filter is its ability to handle complex, multi-

modal (non-Gaussian) posterior distributions. However, it has difficulties when x is high-

dimensional. Namely, the number of particles n required to adequately approximate the

distribution grows exponentially with the dimensionality of the state space. This poses

difficulties in applications such as articulated human body tracking or SLAM.

After having described the experimental setup, experiments to validated the designed

architecture in an indoor environment will be shown. Videos of the experiments are

available at [1], [2]. Figure 3.25 shows a portion of the patrolled area and its representation

in Player/Stage. The blue line represents the border, the red, green and cyan polygons

represent the robots together with their visibility range. In particular the border is a closed

line composed by segments joined by arcs; and its overall length is 51 m. The robots know

the exact description of the border and they approach it at a speed of 0.5 m/s (λrf = 0.3 ),

patrol at a speed of 0.35 m/s (λcw = λccw = 0.35) and escape other teammates at a speed

of 0.3 m/s (λta = 0.3). The localization in the environment is achieved by a pre-built map

and the localization driver based on an adaptive particle filter ([45]). Visibility range and

safety area are equal to 2.5 m, the threshold value for the state transitions described in

Section 3.6.5 is 0.6 m. Moreover, if a robot is in the patrolling state (see Sect. 3.6.5), every

27 s it can decide to invert its motion direction, according to a random variable.

Figure 3.25 shows a portion of the patrolled area and its Player/Stage representation.
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Figure 3.25: On the left a portion of the environment. On the right its representation
obtained by Player/Stage software, the path and the three patrolling robots.

Figure 3.26 shows the distance from the border for the three robots. The distances are

within 0.1m, this value it’s acceptable for the experimental conditions and requirements.

Moreover, peaks are reached during rotation movements due to sensor noise and, above

all, to the neglected robot dynamics in the control law.
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Figure 3.26: Distance from the border.

Figure 3.27 shows the time histories of the robots action selection. In their initial

positions, robots 1 and 2 are closer than the safety range, in this way both of them will

activate the Avoid Teammate Action. After a few seconds, all robots enter in the patrolling

state. While patrolling, robots are usually in the state KeepGoing (CW or CCW ). Spikes

in this graph correspond to motion direction changes (when two robots encounter each

other), where a sudden transition from KeepGoing to PatrolCW for one robot always
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comes with a sudden transition to PatrolCCW for the other robot. After the interaction

they go back to the Keep Going state proceeding in opposite directions. A sequence of

the movements occurring in this situation is shown in Figure 3.28.
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Figure 3.27: Time history of actions selection. ARF: Action Reach Frontier.
AKGCW: Action Keep-Going (CW). AKGCCW: Action Keep-Going (CCW).
APCW: Actions Patrol CW. APCCW: Action Patrol CCW. ATA: Action Avoid
Teammate.

Finally, it is useful to show how the distance between two consecutive robots varies over

time during the patrolling mission (Figure 3.29). According to the deterministic optimal

policy in [32], in every time instant, the distance between two consecutive robots should

be, in our case, one third of the overall border length; also, all robots should move in the

same direction. On the contrary, according to [5], robots should move synchronously but

in a nondeterministic way, in order to maximize the probability of intercepting an intruder.

Both the cases require a centralized supervisor or information exchanging between robots,

so it is straightforward to imagine that the approach proposed can have better performance

only increasing the number of vehicles or removing some constraints.
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Figure 3.28: Three robots team performing the patrol mission. The lower ones (in
red and cyan) meet along the path and invert their motion directions. The arrows
represent forward motion direction.
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Figure 3.29: Distance between two consecutive robots.



Conclusions and future work

The research described in this thesis has concerned the development of a high level decen-

tralized architecture for the control of multi-robot systems.

The architecture has been developed in the framework of the Null-Space-Behavioral ap-

proach, a behavior-based approach to control generic multi-robot systems. In particular,

the NSB has been introduced in comparison with the main behavioral approaches known

in literature (the layered control system as a significant case of competitive approach and

the motor schema control as a significant case of cooperative approach) to underline its

novelty and advantages. The NSB, in fact, differs from the other approaches in the way it

composes the single task outputs to build the motion command to the robots, and, prop-

erly managing the tasks organized in a hierarchical structure, it allows to simultaneously

achieve multiple, even-conflicting, tasks.

The proposed architecture has been developed in the framework of the swarm robotics and,

among the several assumptions, no communication is allowed among robots, this means

that each robot acts only according its sensing capabilities. At the basis of the developed

architecture, there is the concept of action, obtained by combining in the NSB framework

simple behaviors. These behaviors are elementary motion command not yet suitable for

the given mission, while actions are high level commands allowing the fulfilment of given

tasks. Once defined the set of actions, it is mandatory to design a Supervisor that chooses

the next action to activate. Although several paradigms exist in literature, two supervisor

have been developed: a Finite State Automata Supervisor and a Fuzzy Logic Supervisor.

The overall architecture has been applied to the multi-robot patrolling mission. In this

mission, a group of robots is in charge of surveillance of a given area avoiding collisions

and interference situations. The approach has been tested in simulation in the case of

large number of robots, typical in swarm robotics, and experimentally at the Distributed

Intelligence Laboratory of University of Tennessee on a setup composed by three Pioneer

2DX robots. The approach hes been shown to be effective and robust to sensor noise



and robot failures. However, several extensions and improvements can be taken into con-

sideration. First, other types of Supervisor can be designed, in particular an emotional

supervisor based on the Alliance architecture developed by Parker can be adapted to the

action selection case. The use of such a supervisor, can be useful to deal with highly dy-

namic environments, where more behaviors and actions could be required making difficult

to code the action selection mechanism by means of a state finite automata or a fuzzy

logic engines. Moreover, the developed architecture can be tested in different missions like

coverage, flocking, etc., properly redefining the behavior and action sets. It would be also

interesting to test the approach in the case of unmanned underwater vehicles (UUVs), un-

manned aerial vehicles (UAVs) and in heterogeneous team of robots. Finally, introducing

some form of stigmercic communication, will be possible to introduce some performance

indexes and compare the approach with existing decentralized solutions.
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