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Abstract

The objectives of this thesis are modeling, control and fault diagnosis for chemical batch reac-

tors. Due to their strong nonlinearities, intrinsically unsteady operating conditions and lack of

complete state and parameters measurements, control, optimization and diagnosis of chemical

plants and processes are major technical challenges for industrial engineers and control experts.

The benefits of advanced control for chemical reactors include increased productivity and im-

provements in safety, product quality and batch to batch uniformity. Although the control and

diagnosis techniques presented here are applicable to a broad range of nonlinear systems, the

application of these methods to a nonlinear process control problems has been emphasized. To

this aim, a complex reaction scheme has been chosen as application to test the effectiveness of the

proposed techniques on a simulation model built in the Matlab/Simulink c© environment.

First, a complete model, involving a large number of reaction and intermediate chemical

species, has been developed. Then a number of simplified reaction schemes, involving only a

limited number of reaction and chemical species, has been considered in order to reproduce the

behavior of the complete model. The parameters of these simplified models have been identified

via a nonlinear estimation method. Therefore, the high-order complete model has been adopted

to build a reliable and accurate simulation model, while the design of the control and diagno-

sis schemes has been achieved by resorting to the reduced-order simplified model, thanks to its

limited complexity and computational burden.

An original Feedback Linearizing Controller has been designed for the reactor temperature

control and a stability analysis has been rigourously developed. First, an adaptive nonlinear

observer has been designed to estimate the heat released by the reaction, then, a temperature con-

trol scheme has been designed, based on the closure of two control loops. Two different observers

have been designed, the first one compute the heat on the basis of the concentration estimate and

of the knowledge of the reaction kinetics, the latter one estimates the heat as unknown parameter.

Finally, assuming the presence of redundant temperature sensors both in the reactor and in

the jacket, a fault detection and isolation scheme, based on a bank of two diagnostic observers,

has been developed. As diagnostic observer the observers designed for control purpose have

been adopted.

All the proposed approaches have been tested via a realistic simulation model, built in the

Matlab/Simulink c© environment, and have been compared with other well-established techniques.



Contents

Contents i

List of Figures iii

List of Tables v

Introduction vi

I.1 Overview of previous and related work . . . . . . . . . . . . . . . . . . . . . . . . . vii

I.1.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

I.1.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I.1.3 Fault diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I.2 Objectives and results of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Modeling 1

1.1 Introduction to chemical kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Reactor types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The mathematical model of an ideal jacketed batch reactor . . . . . . . . . . . . . . 4

1.3.1 The heat released by the reaction . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Compartment reactor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Phenol-formaldehyde reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Reaction scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.3 Mass balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.4 Heat released by the reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Identification of reaction dynamics 24

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Model identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Optimization algorithms for parameters estimation . . . . . . . . . . . . . . . . . . 27

2.4.1 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Implicit nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Model identification for the phenol-formaldehyde polymerization . . . . . . . . . . 34



2.5.1 Generation of input-output data . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 Selection of candidate models . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 Parameters estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Control 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Estimation of the heat released by the reaction . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Model-based nonlinear observer . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Model-free approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Model-based controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Stability analysis of the controller-observer scheme . . . . . . . . . . . . . . . . . . 57

3.6 Addition of an integral action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Application to the phenol-formaldehyde reaction . . . . . . . . . . . . . . . . . . . 61

4 Fault diagnosis 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Basic Principles of model-based fault diagnosis . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Fault isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Performance evaluation of a fault diagnosis system . . . . . . . . . . . . . . 69

4.3 Fault classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Proposed FDI scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Residuals generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Sensor faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.3 Actuators faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.4 Decision Making System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Case studies 76

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Identification of the reaction kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Estimation of kinetic parameters . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.2 Estimation of the molar enthalpy changes . . . . . . . . . . . . . . . . . . . . 79

5.3.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Fault diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Conclusions and future work 112

Bibliography 114



List of Figures

1.1 a) Batch Stirred Tank Reactor (BSTR); (b) Continuous Stirred Tank Reactor (CSTR);

(c) Tubular Reactor, or Plug Flow Reactor (PFR). . . . . . . . . . . . . . . . . . . . . 3

1.2 Structure of compartments around the impeller. . . . . . . . . . . . . . . . . . . . . 8

1.3 (a) Phenol; (b) Formaldehyde. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Formation of the reactive compounds from phenol (a) and formaldehyde (b). . . . 11

1.5 Reactive positions on the phenol ring. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Addition reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Examples of possible condensation reactions: (a) condensation of two methylols;

(b) condensation of a methylol with a free position of phenol. . . . . . . . . . . . . 13

1.8 Dimers regarded as compound D1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Block scheme of the control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Physical versus Analytical redundancy. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Model-based fault diagnosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Fault diagnosis and control loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Open-loop system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Sensor fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Actuator fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 DMS Voter Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Model α first-order kinetics: temperature profile no.1. . . . . . . . . . . . . . . . . . 87

5.2 Model α second-order kinetics: temperature profile no.1. . . . . . . . . . . . . . . . 87

5.3 Model β first-order kinetics: temperature profile no.1. . . . . . . . . . . . . . . . . . 88

5.4 Model β second-order kinetics: temperature profile no.1. . . . . . . . . . . . . . . . . 88

5.5 Model α first-order kinetics: temperature profile no.2. . . . . . . . . . . . . . . . . . 89

5.6 Model α second-order kinetics: temperature profile no.2. . . . . . . . . . . . . . . . 89

5.7 Model β first-order kinetics: temperature profile no.2. . . . . . . . . . . . . . . . . . 90

5.8 Model β second-order kinetics: temperature profile no.2. . . . . . . . . . . . . . . . . 90

5.9 Model α first-order kinetics: temperature profile no.3. . . . . . . . . . . . . . . . . . 91

5.10 Model α second-order kinetics: temperature profile no.3. . . . . . . . . . . . . . . . 91

5.11 Model β first-order kinetics: temperature profile no.3. . . . . . . . . . . . . . . . . . 92



5.12 Model β second-order kinetics: temperature profile no.3. . . . . . . . . . . . . . . . . 92

5.13 Model α first-order kinetics: temperature profile no.4. . . . . . . . . . . . . . . . . . 93

5.14 Model α second-order kinetics: temperature profile no.4. . . . . . . . . . . . . . . . 93

5.15 Model β first-order kinetics: temperature profile no.4. . . . . . . . . . . . . . . . . . 94

5.16 Model β second-order kinetics: temperature profile no.4. . . . . . . . . . . . . . . . . 94

5.17 Desired reactor temperature profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.18 Case study 1: reactor temperature tracking errors. . . . . . . . . . . . . . . . . . . . 98

5.19 Case study 1: commanded temperature of the fluid entering the jacket. . . . . . . . 98

5.20 Case study 1: estimates of the heat released by the reaction. . . . . . . . . . . . . . . 99

5.21 Case study 1: estimates of θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.22 Case study 2: reactor temperature tracking errors. . . . . . . . . . . . . . . . . . . . 100

5.23 Case study 2: commanded temperature of the fluid entering the jacket. . . . . . . . 100

5.24 Case study 2: estimates of the heat released by the reaction. . . . . . . . . . . . . . . 101

5.25 Case study 2: estimates of θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.26 Output errors of the observers in healthy conditions. . . . . . . . . . . . . . . . . . 103

5.27 Voting measure of Tj (abrupt bias at sensor Sj,1). . . . . . . . . . . . . . . . . . . . . 105

5.28 Detection and isolation residuals (abrupt bias at sensor Sj,1). . . . . . . . . . . . . . 105

5.29 Voting measure of Tr (abrupt switch to zero at sensor Sr,2). . . . . . . . . . . . . . . 106

5.30 Detection and isolation residuals (abrupt switch to zero at sensor Sr,2). . . . . . . . 106

5.31 Voting measure of Tj (slow drift at sensor Sj,1). . . . . . . . . . . . . . . . . . . . . . 107

5.32 Detection and isolation residuals (slow drift at sensor Sj,1). . . . . . . . . . . . . . . 107

5.33 Voting measure of Tr (increasing noise at sensor Sr,1). . . . . . . . . . . . . . . . . . 108

5.34 Detection and isolation residuals (increasing noise at sensor Sr,1). . . . . . . . . . . 108

5.35 Voting measure of Tj (abrupt freezing of the measured signal on sensor Sj,1). . . . 109

5.36 Detection and isolation residuals (abrupt freezing of the measured signal on sensor

Sj,1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.37 Actuator fault: faulted input (abrupt constant bias). . . . . . . . . . . . . . . . . . . 110

5.38 Actuator fault: residuals (abrupt constant bias). . . . . . . . . . . . . . . . . . . . . . 110

5.39 Actuator fault: faulted input (abrupt freezing). . . . . . . . . . . . . . . . . . . . . . 111

5.40 Actuator fault: residuals (abrupt freezing). . . . . . . . . . . . . . . . . . . . . . . . 111



List of Tables

1.1 Methylolphenols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Dimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Parameters of addition reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Pre-exponential factors of reactions of addition of dimers. . . . . . . . . . . . . . . . 20

1.5 Pre-exponential factors, in [m3 ·mol−1 · s−1], of condensation reactions. . . . . . . 23

4.1 Decisions of DMS on the basis of the residuals. . . . . . . . . . . . . . . . . . . . . . 74

5.1 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Best fit kinetic parameters for Model α. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Best fit kinetic parameters for Model β. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Kinetic parameters for Model α: pre-exponential factors and activation energies. . . 81

5.5 Kinetic parameters for Model β: pre-exponential factors and activation energies. . . 81

5.6 Molar enthalpy changes for Model α. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Molar enthalpy changes for Model β. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8 Molar enthalpy changes variable with the temperature for Model α with first-order

kinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 Molar enthalpy changes variable with the temperature for Model α with second-

order kinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.10 Molar enthalpy changes variable with the temperature for Model β with first-order

kinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.11 Molar enthalpy changes variable with the temperature for Model β with second-

order kinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.12 RMSE on the test temperature profiles. . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.13 Controller-observer parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



Introduction

Discontinuous reactors (batch and semi-batch) are used extensively for the production

of specialty chemicals, polymers or bioproducts, because of their flexibility in operation

mode. Usually these processes are characterized by small volume production and by re-

action systems quite complex and not entirely known. The control of batch reactors can

have widely differing immediate objectives, from simple rejection of small disturbances

to development of a complete on-line operational strategy in response to the observed

system behavior, [13]. From the practical point of view, safety and product quality are

the mostly interesting aspects. Process control engineers have developed considerable

expertise in continuous processes, characterized by steady-state operation condition, but

the application of this expertise to discontinuous processes rarely achieves comparable

success. Control and optimization of batch processes are real challenges for process con-

trol engineers, [13], because of some technical and operational considerations as:

• Time-varying characteristic. In a batch reactor, chemical transformation proceed from

an initial state to a very different final state. Even if the temperature is kept constant,

the concentration, the heat produced and the reaction rates change significantly

during a batch run. Therefore there exists no single operation point around which

the control system can be designed.

• Nonlinear behavior. The batch processes are characterized by strong nonlinearities,

which are originated, for instance, from the nonlinear dependency of the reaction

rates on concentrations (often) and on temperature (always), or from the nonlin-

ear relationship between the heat exchanged from the reactor to the cooling jacket.

Since the reactor operates over a wide range of conditions, it is not possible to use,

for the purpose of control design, approximate models linearized around a single

operating point.

• Model inaccuracies. The development of reliable models for batch processes is very

time consuming. Hence, in many cases, even the number of significant reactions
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is unknown, not to mention their stoichiometry or kinetics. As consequence only

approximated models are available.

• Few specific measurements. Chemical composition is usually determined by drawing

a sample and analyzing it off-line, i.e., by using invasive and destructive methods.

On-line specific chemical sensor, e.g., spectroscopic sensors, are still rare. Further-

more, the available measurements of physical quantities such as temperature, pres-

sure, torque of the impeller, might present low accuracy due to the wide range of

operation that the measuring instrument has to cover.

• Presence of disturbances. Some disturbances cannot be totally ruled out. These dis-

turbances can be due to operator mistakes (e.g., wrong solvent choice or incorrect

material balances), processing problems (e.g., fouling of sensors and reactor walls,

insufficient mixing), presence of impurity in the raw material. Also the evolution

of the heat produced can be seen as an important nonstationary disturbance. Al-

though it is typically unmeasured, in some cases it can be estimated and used in

the control scheme.

• Irreversible behavior. In batch processes with history-dependent product properties

(e.g. polymerization), it is impossible to introduce remedial correction. Instead in

continuous processes, an appropriate control action can bring the process back to

the desired steady state.

• Limited corrective action. Due to the finite duration of a batch run, the possibility to

influence the reaction typically decreases with the time. Often, if a batch run shows

a deviation in product quality, the charge has to be discarded.

I.1 Overview of previous and related work

In the following, a brief overview of the state of the art and of previous work on the topics

related to the thesis is presented.

I.1.1 Modeling

A reactor comprises a chemical reaction system and a processing equipment (reactor ves-

sel). The reaction systems are often poorly known; even when the desired product and

the main side reactions are well known, since there might exist additional poorly known
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or totally unknown side reactions or partial product. Moreover, sometimes the reaction

involves a great number of chemical species and a detailed model of all of them may be

useless. Hence, often the kinetic model involves few real and pseudo (lumped) reaction

in order to follow the behavior of the concentration of interest. To this aim, many tech-

niques aimed at reducing the complexity of models and to identify the model parameters

have been introduced in the last two decades, (see, e.g., [11,12,51,94,96]). These problems

are not trivial, because the model structure is unknown and one is faced with choosing

many various candidate models. Moreover, the equations describing the system are of-

ten nonlinear differential and/or algebraic equations and the parameters may vary over

a wide range of values. Three different kind of model have been used in the literature for

batch processes:

1. Data-driven black box models. These are empirical input-output models, often able

to represent the relationship between manipulated and observed variables. To this

aim, ARMAX-type models [81], models based on neural network [10], and, more

recently, multivariate statistical PLS models [89] have been proposed. These models

are relatively easy to obtain, but present two main drawbacks: (i) they are, usually,

inadequate for predicting the reactor behavior outside the experimental domain in

which the data were collected for model building; (ii) they are able to represent

only relationships between variables that are manipulated or measured; hence, key

variables, such as the heat or the concentrations, are difficult to represent.

2. Knowledge-driven white box models. This is the preferred approach for modeling batch

reactors. It is a mechanistic, state-space representation based on stoichiometric and

kinetic knowledge, as well as on energy and mass balances for the reactor. The ki-

netic model describes the effect that temperature and concentrations have on the

rate of each reaction. The energy and mass balances relate the states (concentra-

tions, temperature and volume) to the inlet streams and possible disturbances. The

drawbacks of these models are the following: (i) no realistic model is purely mech-

anistic, so a few physical parameters typically need to be estimated on the basis of

experimental data; (ii) their derivation is very time-consuming and they are diffi-

cult to build for industrially-relevant reaction systems (e.g. polymerization); (iii)

they cannot be derived in presence of unknown side-reactions or unknown partial

products.

3. Hybrid grey-box models. They are a combination of the previous ones. Typically
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they are characterized by a simple (simplified) structure based on some qualita-

tive knowledge of the process [49]. Pseudo or lumped reaction are often exercised

within hybrid models, so it is necessary to identify some model parameters and,

sometimes, adjust them on-line. To this purpose, tendency models have been pro-

posed in literature [35]. Parameters identification is based on nonlinear optimiza-

tion techniques, as the steepest descent method (gradient method), the Newton-

Raphson method and the Levenberg-Marquardt method. The drawback of this ap-

proach is that, often, is not possible to follow, using a simplified model, all the

species involved in the reaction, but only the species of major interest.

I.1.2 Control

Usually, the main task of the control system of a batch reactor is that of imposing a given

temperature profile inside the vessel. Control of the temperature allows to determine the

behavior of the chemical reaction, and thus the final product of the batch. In particular,

for each product, a suitable temperature profile is defined, including heating and cooling

phases: the capability of tracking the desired profile determines directly the quality of

the final product. Usually the temperature is controlled via the heat exchange between

the reactor and a heating/coolant fluid, circulating in a jacket surrounding the vessel or

in a coil inside the vessel.

Frequently, a cascade controller is adopted. The most common cascade configura-

tion is characterized by two temperature controllers: the output of the reactor tempera-

ture controller (master) becomes the set-point of the cooling jacket temperature controller

(slave).

The most commonly used control strategies are based on conventional linear PID

controllers. If the process is only mildly nonlinear or it operates near a nominal steady-

state condition these controllers can provide good performance. But, often, industrial

processes, including polymerization process, can exhibit highly nonlinear behavior and

operate within a wide range of conditions. In these cases, the conventional PID con-

trollers must be tuned very conservatively, in order to provide stable behavior over the

entire range of operation; of course this may cause a degradation of control system per-

formance.

In the last two decades, nonlinear model-based control strategies began to be pre-

ferred for complex processes, [45]. The development of these strategies has been moti-

vated by the development of efficient identification methods for experimental nonlinear
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models and significant improvements in the capability of computer-control hardware

and software, that permit a high level of online computation.

Nonlinear control design methods mostly investigated are the input/output lineariza-

tion, also known as feedback linearization, and the nonlinear model predictive control

(MPC).

The input/output linearization provides an exact linearization of the model, indepen-

dent of the operating point. The control laws include the inverse of the dynamical model

of the process, provided that such an inverse exists. Several process control design meth-

ods, such as generic model control [59], globally linearizing control [54], internal decou-

pling control [5], reference system synthesis [8] and a nonlinear version of internal model

control [43], are based on this approach.

The model predictive control theory is a well-established design framework for linear

systems. It is an optimal-control based method to select control inputs by minimizing an

objective function. This function is defined in terms of both present and predicted system

variables, and is evaluated by using an explicit model to predict future process outputs.

The success of this techniques for linear systems has motivated the extension to nonlinear

systems (nonlinear MPC). The control problem formulation is analogous to linear MPC

except that a nonlinear dynamic model is used to predict future process behavior. It

needs the solution, at each sampling instant, of a nonlinear programming problem [9];

the computational effort is compensated by the benefits of the nonlinear approach.

Both the previous approaches need an accurate model of the process and the measures

of the state variables. As aforementioned, the measures of the whole state is, often, not

available, but a possible solution to this problem is the state estimation via nonlinear

observers [34, 41].

An alternative approach is to design the controller on the basis of empirical model,

developed from experimental data. To this aim the most interesting and investigated tool

are the artificial neural networks [10, 30, 33].

I.1.3 Fault diagnosis

Safety problems in chemical reactors are due to many causes, e.g. equipment failures,

human errors, loss of utility and instrument failures. The occurrence of a fault may cause

a process performance degradation (e.g., lower product quality) or, in the worst cases,

fatal accidents, such as run-away. Depending on the nature of the problem, the proper

response can be to hold the reaction sequence until the failure has been removed, or to
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initiate an orderly emergency shutdown. The adoption of automatic fault detection tech-

niques, achieving fast and reliable detection of faults, is necessary in order to develop

an automatic correction system. Faults can be divided in actuator faults (e.g., electric-

power failure, pomp failure, valve failure), process faults (e.g., abrupt variation of the

heat transfer coefficient, side reaction due to impurity in the raw material) and sensor

faults. Often, sensor redundancy is adopted and a suitable voting scheme is developed

in order to recognize the faulty sensor and output a healthy measure.

Several fault diagnosis approaches have been proposed for steady-state processes

(e.g., continuous reactors), but the application of these techniques to batch chemical

processes are usually difficult because of the reasons previously introduced. Existing

fault diagnosis approach for chemical batch reactors can be roughly classified in model

free approaches (i.e., approaches based on statistical analysis, neural networks or ex-

pert systems) and model-based approaches (e.g., observer-based techniques). Statisti-

cal techniques can be classified in univariate statistical techniques (e.g., simple thresh-

olding [67]) and multivariate statistical techniques (e.g., principal component analysis

(PCA) [31,56,99] and projection to latent structures (PLS) [66,105]). The univariate statis-

tical approaches use upper and lower bounds for individual variables to detect and iden-

tify faults. They are easy to implement but lead to a significant number of false alarms;

furthermore, not all faults can be detected by the violation of the normal variation range

of individual variables. Multivariate techniques achieve best performance both in term of

accuracy and of robustness. Multivariate techniques in conjunction with methods based

on PCA/PLS project most of the information on the measured process variables onto low

dimensional spaces, where a region of normal operative conditions can be easily defined.

Namely, measurements are projected onto a low dimensional space and compared with

the normal or common-cause variation predicted by the model. Then, statistical tests are

used to detect any abnormal behavior. The major benefit of the multivariate statistical

techniques is that a model of the system is not needed, and only a database of historical

data regarding normal operation conditions is required.

Knowledge-based expert system approaches to fault diagnosis have been proposed in

the literature. The main drawbacks of these approaches are in the knowledge acquisition

and the unpredictability of the expert system response outside its domain of expertise.

These problems can be overcame by using artificial neural networks (ANNs). The ANNs

do not require explicit encoding of knowledge or a deep knowledge of the mathemati-

cal model of the process. The first applications of ANNs in fault diagnosis for chemical
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process are based on back-propagation networks [47, 101]. More recently, different neu-

ral networks architectures have been preferred because their best generalization perfor-

mance; for instance Radial Basis Functions (RBFs) networks, [106], or Dynamic Neural

Networks, [75], have been adopted. In [87, 88] a combination of ANNs and knowledge-

based expert systems (i.e., fuzzy systems) is presented. Recently, Bayesian Belief Network

(BBNs) have been adopted for detecting faults in processes both in steady-state operation

conditions, [71, 86], and in unsteady operation conditions, [70].

Model-based analytical redundancy methods [20,37,76,100] are based on the compar-

ison between the measurements of a set of variables characterizing the behavior of the

monitored system and the corresponding estimates predicted via a mathematical model

of the system. The deviations between measured and estimated variables provide a set of

residuals sensitive to the occurrence of faults; then, by processing the information carried

by the residuals, the faults can be detected (i.e., the presence of one or more faults can be

recognized) and isolated (i.e., the faulty components are determined). Among the model-

based analytical redundancy methods, the observer-based methods require a model of

the system to be operated in parallel to the process, i.e., the so called diagnostic observer.

To the purpose, Luenberger observers [39, 50, 95], Unknown Input Observers [93] and

Extended Kalmann Filters [48] have been mostly used in fault detection and identifica-

tion for chemical processes and plants. Since perfect knowledge of the model is rarely

a reasonable assumption, soft computing methods, integrating quantitative and quali-

tative modeling information, have been developed to improve the performance of FD

observer-based schemes for uncertain systems (see, e.g., the survey in [77]). Remarkably,

a major contribution to the observer-based approach has been given by [84, 108], where

the failures are identified by the so-called on-line interpolator (e.g., ANNs whose weights

are updated on line).

I.2 Objectives and results of the thesis

This thesis deals with the problems of modeling, control and fault diagnosis for batch

reactors. The objectives of the thesis are:

• The development of an accurate model of a batch reactor in which a complex reac-

tion takes place. Then, the development of a simplified model suitable for control

purposes; in order to be used in the control laws, this model could be sufficiently

accurate, but, at same time, not too much complex.
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• The development of a novel control scheme more efficient and robust then the con-

ventional linear schemes.

• The development of a fault diagnosis method for batch chemical processes, that

could detect and isolate sensors and actuators faults.

In order to pursue the above objectives, first of all, a complex exothermic reaction

scheme, modeling the production of a pre-polymer of the phenolic resin and involving

phenol and formaldehyde, has been considered.

First, a complete model, involving a large number of reaction and intermediate chem-

ical species, has been derived. Then, a number of simplified reaction schemes, involving

only a limited number of reaction and chemical species, has been considered in order to

reproduce the behavior of the complete model. The parameters of these simplified mod-

els have been identified via a nonlinear estimation method. The obtained models are

able to effectively predict the heat produced by the reaction and the concentration of the

desired product. Therefore, the high-order complete model has been adopted to build

a reliable and accurate simulation model, while the design of the control and diagnosis

schemes has been achieved by resorting to the reduced-order simplified model, thanks

to its limited complexity and computational burden.

Then, a nonlinear controller-observer scheme, based on input/output linearization,

has been designed, [17, 83]. First, an adaptive nonlinear observer has been designed

to estimate the heat released by the reaction, then, a temperature control scheme has

been designed, based on the closure of two control loops. Namely, an outer control loop,

closed on the reactor temperature, computes the reference signal for the inner control

loop, closed on the jacket temperature. The convergence of the overall scheme, in terms

of observer estimation errors and controller tracking errors, is rigourously proven, via a

Lyapunov-like argument, for a large class of reaction schemes.

Finally, assuming the presence of redundant temperature sensors both in the reactor

and in the jacket, a fault detection and isolation scheme, based on a bank of two diag-

nostic observers, is developed, [80]. Two different observer designs have been proposed:

the adaptive observer previously introduced for control purposes, and a model-free ob-

server, based on an online general purpose interpolator for estimating the heat released

by the reaction.

All the proposed approaches have been tested via a realistic simulation model, built in

the Matlab/Simulink c© environment, and have been compared with other well-established
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techniques.

I.3 Outline of the thesis

The thesis is organized as follows:

Chapter 1 concerns the modeling of batch reactors, with a brief description of the re-

actor types and of the basic principles of the chemical kinetics. Furthermore, the phenol-

formaldehyde reaction, chosen as application during all the thesis, is described and mod-

eled.

Chapter 2 presents an overview on identification techniques and their application to

the phenol-formaldehyde reaction.

Chapter 3 illustrates the controller-observer proposed scheme for temperature con-

trol of batch reactors. Two novel nonlinear observers are presented for the estimation

of the heat released by the reaction, and a two-loop control scheme, based on feedback

linearization, is designed. Stability analysis both for the observers and for the overall

scheme, are rigourously developed via Lyapunov arguments.

Chapter 4, after a brief introduction to fault diagnosis, presents the proposed fault

detection and isolation technique, based on temperature sensors redundancy and on the

generation of residuals via the nonlinear observers presented in Chapter 3.

Chapter 5 gives some simulation results about the application of identification, con-

trol and diagnosis techniques for a batch reactor in which the phenol-formaldehyde re-

action takes place. In particular a comparison between the proposed control scheme and

a well-established technique is presented.



Chapter 1

Modeling

1.1 Introduction to chemical kinetics

Chemical kinetics deals with the study of the rates of chemical reactions. The reaction

rate can be defined as the change of concentration of reactants, ∆X , that occurs during a

given period of time, ∆t

R∆ =
∆X
∆t

.

When infinitesimally small change in concentration dX , occurring over an infinitesimally

short period of time, dt, is considered, the instantaneous rate of reaction is defined as

Rr =
dX

dt
.

Several factors influence the reaction rate: the physical state of reactants and products,

the concentration of reactants, the temperature, the presence or absence of catalysts. To

the aim of this thesis only reactions in liquid phase are considered. In general, according

to the collision theory, increasing the reactants concentrations increases the reaction rate,

because molecules must collide in order to react. The dependence of the reaction rate

from the concentrations can be expressed via the following exponential law

Rr = k(Tr)
∏
j

C
nj

j (1.1)

where Cj is the concentration ([mol·m−3]) of the jth reactant, k(Tr) is the rate constant,

depending on the reaction temperature ([K]), Tr, and nj is the order of the reaction with

respect to jth reactant . The overall order n of the reaction is given by the sum of all the

individual orders

n =
∑
j

nj .
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For elementary reactions the exponents nj should be the same as the stoichiometric coef-

ficients in the balanced equation, but for more complex reactions this is usually not true

and they must be determined experimentally.

The rate constant k(Tr), usually, contains the temperature dependence of the reaction

rate. The simplest, but remarkably accurate, formula for the rate constant is the Arrhenius

law. It was first proposed by the Dutch chemist H. van’t Hoff in 1884; five years later the

Swedish chemist Swante Arrhenius provided a physical justification and interpretation

for it.

The basic idea is that the reactants, in order to react, first need to acquire enough

energy to form an activated complex. This minimum energy is called activation energy

([J·mol−1]), Ea, for the reaction. In thermal equilibrium at the temperature Tr, the frac-

tion of molecules, that have a kinetic energy greater than Ea, can be calculated from the

Maxwell-Boltzmann distribution and turn out to be proportional to exp
(
− Ea
RTr

)
, where

R is the universal gas constant ([J·mol−1·K−1]). This leads to following law for the rate

constant

k(Tr) = k0 exp

(
− Ea
RTr

)
. (1.2)

The constant k0 is a frequency factor, usually called pre-exponential factor, and it is a spe-

cific constant of each particular reaction. The physical dimensions of the pre-exponential

factor depend on the order of the reaction. It can be seen that either increasing tempera-

ture or decreasing the activation energy, will result in an increase in rate of reaction.

In the XXth century, several improvement to the Arrhenius law were proposed; for

instance, in 1916-18, Trautz and Lewis proposed a pre-exponential factor proportional

to the square root of the temperature. This reflects the fact that the overall rate of all

collisions, reactive or not, is proportional to the average molecular speed, which, in turn,

on the basis of collision theory, is proportional to
√
Tr. In practice, the dependance of

the pre-exponential factor from
√
Tr is, usually, very slow compared to the exponential

dependance associated with Ea, so it can be easily disregarded.

1.2 Reactor types

In a chemical process, at least two compounds are brought together in order to react or

aid the reaction (catalysts). Hence, multiple material flows must be considered. These

flows can either occur as:
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• batch, where process occurs repeatedly, interrupted when the reactants are loaded

and the product are unloaded;

• semi-batch, where some material flows are discontinuous while others are continu-

ous;

• continuous, in this case is possible to distinguish between counter current, co-

current and cross current flow.

The chemical reactors can be roughly classified into three categories, based on three

ideal models:

a) Continuous Stirred Tank Reactor (CSTR);

b) Tubular Reactor, or Plug Flow Reactor (PFR);

c) Batch Stirred Tank Reactor (BSTR).

Figure 1.1: a) Batch Stirred Tank Reactor (BSTR); (b) Continuous Stirred Tank Reactor (CSTR); (c)

Tubular Reactor, or Plug Flow Reactor (PFR).

The CSTR and BSTR models are based on the assumption of perfect (instantaneous)

mixing. Therefore, the entire content of the reactor is assumed to be homogeneous with

respect to the temperature and the concentration. The PFR model is based on the as-

sumption of no mixing in axial direction and perfect mixing in radial direction.

The continuous reactors are characterized by a continuous inlet stream of reactant

and by a continuous outlet stream of products. Except an initial transient they operate in

steady-state conditions.

The CSTRs consist of a well-stirred tank, where, under the hypothesis of perfect mix-

ing, the product composition is identical to the one inside the reactor, and invariant with

respect to time. They are used for large productions, so they tend to be rather large and
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need to be efficiently mixed. Deviations from ideal behavior occur when there is a less

effective mixing regime and may generally be overcome by increasing the stirrer speed

or by more effective reactor baffling.

The PFRs consist of a pipe, or tube, where a stream of reactants is pumped through.

The reaction proceeds as the reactants travel through the tube. At the inlet the reaction

rate is very high, because of the high concentrations of reactants, but, as the concentra-

tions of reactants decrease, the reaction rate slows down. These reactors are characterized

by perfect radial mixing and no axial mixing. Therefore, the system parameters vary

along the axes of the tube, but are constant with respect to time.

The BSTRs are used for small scale production. They consist of a well-stirred tank,

where all the reactants are loaded at once and then left for a long time, in order to obtain

high conversion degree. The concentrations vary with respect to time, but, under the

hypothesis of perfect mixing, are uniform in all the volume. Other important features are

that the total mass of each batch is fixed, each batch is a closed system and the reaction

time for all the reagents is the same. Batch reactors are diffused, in practice, because of

their flexibility with respect to reaction time and to the kind and quantities of reaction

that can be performed.

The reactors are often characterized by a heating/cooling system, where a flow of

heating/cooling fluid is injected in order to heat the reacting mixture or to remove the

excess heat. Different heating/cooling systems are available in the industrial practice:

1. A jacket in which the inlet temperature of heating/cooling fluid is adjusted.

2. Both a jacket and an inside coil are present. Cooling water circulates in the coil,

while heating fluid is injected in the jacket.

3. A jacket in which heating and cooling can be performed alternatively by choosing

a hot or cold fluid.

1.3 The mathematical model of an ideal jacketed batch reactor

The mathematical model of a jacketed batch reactor is given by the mass balances for

each species involved in the reaction and by the energy balances in the reactor and in the

jacket.

On the basis of mass and energy conservation principles, the mass and energy that

enter a system must either leave the system or accumulate within the system, i.e, a generic
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balance must be written as

IN = OUT +ACC

where IN denotes what enters the system, OUT denotes what leaves the system and

ACC denotes accumulation within the system. IN and OUT must be positive terms,

instead ACC may be positive or negative. In the particular case of chemical systems, a

production term (PR), due to the reaction, is introduced such as

IN + PR = OUT +ACC. (1.3)

The production term can be positive or negative.

The batch reactor is a closed system in which there are no input and output terms.

Therefore, the mass balance simply becomes

ACC = PR.

For the generic ith chemical species in the reactor, the mass balance can be written as

d

dt

∫
V
CidV =

∫
V
RidV, (1.4)

where Ci is the concentration ([mol·m−3]) of the ith species, V is the reaction volume

([m3]), Ri is the rate ([mol s−1 m−3]) at which the ith species is produced (Ri > 0) or

consumed (Ri < 0).

In the following, it is assumed that the reaction occurs in liquid phase; therefore, the

reaction volume can be considered constant and equation (1.4) becomes

dCi
dt

V = RiV ⇒ dCi
dt

= Ri. (1.5)

The term Ri can be written as

Ri = ±νiRr,

where νi is the stoichiometric coefficient of the ith species and Rr is the reaction rate

computed via (1.1). The sign is plus if the species is a product and minus if it is a reagent.

Hence, the mass balance for the ith species becomes

dCi
dt

= ±νik(Tr)
∏
j

C
nj

j . (1.6)

The energy balance in the reactor is given by

d

dt
(ρrcprVrTr) = Q− US (Tr − Tj) , (1.7)
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where
d

dt
(ρrcprVrTr) is the accumulation term, Vr is the reactor volume, ρr is the density

of the reacting mixture ([kg·m−3]), cpr is the mass heat capacity of the reactor contents

([J·kg−1·K−1]), Q is the heat produced (Q > 0) or consumed (Q < 0) by the reaction and

represents the production term, US (Tr − Tj) is the heat exchanged with the jacket, U

([J·m−2·K−1·s−1]) is the heat transfer coefficient, S ([m2]) is the heat transfer area and Tj

is the temperature of the fluid in the jacket.

Under the assumption of liquid phase, the density and the mass heat capacity can be

considered constants
dTr
dt

=
Q

ρrcprVr
− US

ρrcprVr
(Tr − Tj) . (1.8)

In the cooling jacket, there are a cool (or hot) fluid, entering the jacket with tempera-

ture Tin and flow rate F ([m3·s−1]), and a stream leaving the jacket with temperature Tout

and flow rate F . The temperature Tout, because of the assumption of perfect mixing in

the jacket, is equal to the temperature of the fluid in the jacket, Tj . In the jacket there is

no reaction and, therefore, no production term, so the energy balance is the following

d

dt
(ρjcpjVjTj) = US (Tr − Tj) + ρjcpjF (Tin − Tj) , (1.9)

where Vj is the jacket volume, ρj is the density of the fluid in the jacket, cpj is the mass

heat capacity of the fluid in the jacket.

Under the usual assumption of liquid phase, equation (1.9) becomes

dTj
dt

=
US

ρjcpjVj
(Tr − Tj) +

F

Vj
(Tin − Tj) . (1.10)

In conclusion, the mathematical model of an ideal jacketed batch reactor, in which

a reaction, involving p species, takes place, is given by p mass balances (1.6) and two

energy balances, the first written for the reactor (1.8) and the latter written for the jacket

(1.10).

1.3.1 The heat released by the reaction

During a chemical reaction, some molecular links are broken an new ones are created. In

order to broke or create a link, the system needs to absorb or release some energy, usually

in form of heat. The energy released (or absorbed) by the reaction can be computed

analyzing the molar enthalpy change, ∆H ([J·mol−1]), between reactants and products

∆H = Hpr −Hre, (1.11)
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whereHpr is the sum of the enthalpy of all the products andHre is the sum of the enthalpy

of all the reactant species.

∆H can be positive, i.e. Hpr > Hre, or negative, i.e. Hre > Hpr. In the first case

the reaction absorbs energy as it moves towards completion and it is called endothermic;

instead, if ∆H < 0, the energy is released during the reaction, which is called exothermic.

The molar enthalpy change gives the heat released or consumed for each mole, in

order to obtain the effective heat for time unit, involved in a reaction, it is possible to use

the following expression

Q = −∆HVrRr = −∆HVrk(Tr)
∏
j

C
nj

j . (1.12)

The sign minus is used in order to have a positive heat for exothermic reactions and a

negative heat for endothermic reactions.

1.4 Compartment reactor model

In the presence of a non-perfect fluid mixing, the ideal models are not adequate to de-

scribe real chemical reactors. To this aim, many complex models have been introduced.

In this section, the compartment reactor model is described.

Industrial stirred tank reactors are often characterized by non-uniformities of con-

centrations and temperature as a result of non-perfect fluid mixing. These effects be-

come more and more critical when the reaction heat and/or the reactor volume increase.

Networks composed of fictitious interacting compartments have been applied to de-

scribe a large numbers of industrial processes in which partial mixing phenomena take

place [23]. A compartment model approach has been also proposed for modeling of non-

ideal stirred tank reactors [16, 25, 107], since, when compared to the alternative approach

of Computational Fluid Dynamics, it has important computational advantages. In the

following, a compartment model for a single-phase jacketed batch reactor is developed

as described in [16].

A vessel agitated by means of a Rushton turbine located halfway with respect to the

liquid depth is considered. If the vorticity is eliminated by suitable baffles, the main liq-

uid circulation flow rate, Fc, generated by the impeller is radially directed and then split

in two equal returning flows, Fc/2, which are recirculated to the turbine. Additionally,

secondary flow rates Fe must be considered to account for the axial mixing occurring at

the ideal planes of separation between the main circulation streams (Figure 1.2).



Chapter 1. Modeling 8

Figure 1.2: Structure of compartments around the impeller.

The circulation and exchange flow rates are related to both the impeller speed N and

the blade diameter D via the following relationships, [73, 98]

Fc = KcND
3,

Fe = KeND
3,

where the factors Kc and Ke mainly depend on system geometry [25]. Hence, for any

given system, a linear relationship between Fc and Fe holds

Fe = δFc,

where δ is a positive constant.

On the basis of the considered macroscopic flow pattern, the dominant circulation

flows, Fc and Fc/2, subdivide the reactor into three parallel levels; each level, in turn,

is divided into nc/3 equally sized compartments of volume Vc = Vr/nc, where Vr is

the volume of the whole reactor. Every compartment is modeled as a non-stationary

ideal continuous stirred tank reactor, with a main inlet and outlet flow which connects

the given compartment with adjacent compartments on the same level, and secondary

exchange flows accounting for the turbulent mixing with adjacent compartments laying

on the upper and/or lower level (Figure 1.2).

The mass balance written for a generic compartment contains the terms given by the

mass exchange between the adjacent compartments. For instance, for the ith species and

a generic hth compartment on the central level the following relationship holds

Ċi,h = Ri,h +
Fc(Ci,s − Ci,h)

Vc
+
Fe(Ci,l + Ci,u − 2Ci,h)

Vc
, (1.13)



Chapter 1. Modeling 9

where Ci,h, Ri,h and Th are the concentration of the ith species, the rate of production of

the ith species and the temperature in the hth compartment, respectively. The subscripts u

and l denote the adjacent compartment lying on the upper and lower level, respectively,

while subscript s denotes the compartment located on the same level but upstream with

respect to the dominant circulation flow. When the balance is written for the first com-

partment of the central level, (i.e., h = nc
3 +1), the term accounting for the inlet circulation

flow is modified, since it is composed by two different contributes originating from the

corresponding compartment located on the upper and lower level, respectively.

Ċi,h = Ri,h +
Fc
2

(Ci,u + Ci,l − Ci,h)
Vc

+
Fe(Ci,l + Ci,u − 2Ci,h)

Vc
. (1.14)

Moreover, equations (1.13) and (1.14) must be suitably modified when the balance is

referred to compartments laying on levels 1 and 3, where Cu and Cl are, respectively,

equal to zero and Fc has to be replaced by Fc/2. Therefore for the hth compartment of

level 1 the following relationship holds

Ċi,h = Ri,h +
Fc
2

(Ci,s − Ci,h)
Vc

+
Fe(Ci,l − 2Ci,h)

Vc
, (1.15)

and for the hth compartment of level 3

Ċi,h = Ri,h +
Fc
2

(Ci,s − Ci,h)
Vc

+
Fe(Ci,u − 2Ci,h)

Vc
. (1.16)

Analogously, the energy balance in the generic compartment on the central level

yields

Ṫh =
(−∆H)Rh
ρrcpr

− βh
US (Th − Tj)
Vcρrcpr

+
Fc(Ts − Th)

Vc
+
Fe(Tl + Tu − 2Th)

Vc
, (1.17)

where Rh is the reaction rate in the hth compartment, βh is the geometric ratio between

the effective heat exchange surface of the considered compartment and the whole heat

transfer area, S, (β = 0 for compartments not bordering the jacket). Moreover, the same

corrections as for mass balances must be introduced in the energy balance written for the

first compartment on the central level and for the compartments on levels 1 and 3.

Finally, the energy balance in the jacket reads

Ṫj =
nc∑
h=1

βh
US (Th − Tj)
Vjρjcpj

+
(Tin − Tj)

Vj
F. (1.18)
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1.5 Phenol-formaldehyde reaction

In this section a detailed mathematical model of a complex reaction scheme is developed.

This model forms the basis for a detailed simulation scheme, which will be used for

testing and validation of the control and diagnosis scheme developed in this thesis.

The phenol-formaldehyde reaction for the production of a pre-polymer of a resol-

type phenolic resin is considered. Phenolic resins are the oldest thermosetting poly-

mers, therefore several authors have studied this reaction. The polymerization process of

phenol-formaldehyde was carried out in the early XXth century, but the studies of the

reaction were carried out later [32,36]. A few works have been tackled the problem of the

mathematical modeling of resol-type phenolic resins, because of the complexity of the

kinetic scheme. In [74] a theoretical model for the branching reactions has been devel-

oped, but the kinetic parameters were taken from the novolak chemistry, which differs

widely in the nature of reactions, reactivity ratios and substitution effects. More recently,

in [68, 85], a model of the synthesis of resol-type phenolic resins, including the effect of

various parameters as pH, formaldehyde-to-phenol molar ratio and catalyst, has been

proposed.

Phenol (C6H5OH) and formaldehyde (CH2O) can react in the presence of a catalyst

and with different formaldehyde-to-phenol molar ratios. On the basis of formaldehyde-

to-phenol molar ratio, rα, it is possible to obtain resol-type resins (rα > 1), or novolak-

type resins (rα < 1). For the resol-type resins an alkaline catalyst is used, while novolak-

type resins need an acid catalyst. Phenol and alkaline catalysts are commercial products,

used without further purification; formaldehyde is available as a 37% aqueous solution.

In an alkaline aqueous solution, phenol and formaldehyde react in the form of phenolate

and methylene glycol, respectively. In Figure 1.4 the formation of these compounds from

phenol and formaldehyde is shown.

Figure 1.3: (a) Phenol; (b) Formaldehyde.
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Figure 1.4: Formation of the reactive compounds from phenol (a) and formaldehyde (b).

Phenol presents three reactive sites, two located in -ortho and one in -para positions

(see Figure 1.5), that are characterized by different reactivity; the formaldehyde as methy-

lene glycol presents two reactive positions.

Figure 1.5: Reactive positions on the phenol ring.

1.5.1 Reaction scheme

The reaction for the production of phenolic resin occurs in two phases:

(i) Addition; the formaldehyde reacts with the reactive positions of the phenol ring

and produces methylolphenols, in which the hydrogen of the phenol is substituted

by a methylol group (CH2OH). During this phase, mono-, di- and tri- substituted

phenols are formed.

(ii) Condensation; the methylolphenols condense either with other methylol groups to

form ether linkages or, more generally, with available reactive unsubstituted posi-

tion in the phenol ring to form methylene bridges.

The initial addition reactions of formaldehyde with phenol are faster than the sub-

sequent condensation reactions; therefore, the methylolphenols are initially the predom-
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inant intermediate compounds. The addition reactions are shown in Figure 1.6, [85].

During this phase, a mixture of phenol, formaldehyde and five different methylolphe-

nols (monomers) is present. In the following, the notation E1 and E2 will be used for

phenol and formaldehyde, respectively, and the notation Ei (i = 3 . . . 7), will be used for

the methylolphenols. In Table 1.1 all methylolphenols produced in the addition phase

are reported.

Figure 1.6: Addition reactions

Symbol Chemical Formula

E3 C6H4OH(CH2OH)

E4 C6H4OH(CH2OH)

E5 C6H3OH(CH2OH)2

E6 C6H3OH(CH2OH)2

E7 C6H3OH(CH2OH)3

Table 1.1: Methylolphenols.

During the condensation phase, the methylolphenols react either with other methy-

lolphenols or with phenol, and the products are characterized by the presence of two

phenol rings (dimers). Examples of possible condensation reactions are shown in Figure

1.7, [85].
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Figure 1.7: Examples of possible condensation reactions: (a) condensation of two methylols; (b)

condensation of a methylol with a free position of phenol.

The obtained dimers can be different both for the number of methylol groups and

for the position of these groups. These compounds can react either with formaldehyde

to produce dimers with a different structure (addition reaction), or with other dimers

or methylolphenols in order to obtain compounds characterized by three phenol rings

(trimers). In this way, it is possible to obtain even long chains (polymers).

1.5.2 Mathematical model

The pre-polymer with the highest concentration of the tri-substituted phenols, E7, has

been considered as desired product. Therefore, to our purposes, the reaction must be

stopped after the addition phase, hence, dimers and trimers can be considered as waste

products. For this reason, in the model all the monomers, some aggregate dimers and

an aggregate trimer are considered. Elements characterized by more than three phenol

rings have not been taken into account, because the reaction must be stopped before their

production. All the dimers with the same number of methylol groups are regarded as

unique species; in this way only five different aggregate dimers are considered, reported

on Table 1.2. In the following, the notation Dj , (j = 0 . . . 4), where j is the number

of methylol groups, is used. As an example, in Figure 1.8, all the species, regarded as

aggregate dimer D1 are represented.

In this reaction, the trimers are produced in very low quantities; therefore, all the

trimers are considered as unique species, denoted as E13.
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Figure 1.8: Dimers regarded as compound D1.

Symbol Chemical Formula

D0 (C6H4)2(OH)2CH2

D1 C6H4C6H3(OH)2(CH2OH)CH2

D2 C6H4C6H2(OH)2(CH2OH)2CH2

D3 C6H3C6H2(OH)2(CH2OH)3CH2

D4 C6H2C6H2(OH)2(CH2OH)4CH2

Table 1.2: Dimers.

In conclusion, a reaction scheme involving thirteen chemical species is modeled. The

elements E1 and E2 are the initial reactants (phenol and formaldehyde, respectively),

Ei, (i = 3 . . . 7), are the methylolphenols produced during the addition phase, Dj , (j =

0 . . . 4), are the aggregate dimers and E13 is the aggregate trimer.

1.5.2.1 Selected reactions

Among all the possible reactions, 89 reactions have been selected. In particular, the 7

addition reactions of Figure 1.6 and the 77 condensation reactions characterized by the

highest values of the reaction rate, have been considered. The remaining reactions are fic-

titious reactions: 4 are the addition reactions of formaldehyde with the aggregate dimers,

which represent sets of real reactions, and the last one is representative of the condensa-

tion of dimers with monomers.
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1.5.2.2 Reaction rates

According to [32, 85], both addition and condensation reactions are characterized by sec-

ond order kinetics. In order to obtain the constant rates of the reactions, the procedure

developed by [68, 85] has been used. In [85] the synthesis of a number of different resol-

type resins is studied and the obtained model is experimentally validated. The constant

rates at temperature of 80◦C are computed by referring to the constant rate of a refer-

ence reaction, experimentally obtained. For the remaining reactions, the constant rate is

adjusted using some coefficients, which take into account the different reactivity of the

position -ortho and -para of the phenol ring, the reactivity due to the presence or absence

of methylol groups and a frequency factor. The whole procedure and the values of all

these coefficients for a number of resins can be found in [85].

Once the constant rates at 80◦C and the activation energies are obtained, it is possible

to compute the pre-exponential factors of each reaction using the Arrhenius law (1.2).

In this thesis, the numerical values obtained for the resin RT84 have been adopted.

This resin is obtained via the reaction of phenol and formaldehyde in the presence of

an alkaline catalyst ((CH3CH2)3N) and with excess of formaldehyde. Values of the ac-

tivation energies for the addition reactions are present in literature, for instance in [32]

and [85]. Here, the values proposed by [85] are used. For the condensation reactions and

the following addition reactions of the dimers, an average value has been adopted.

1.5.2.3 Reactions

In the following, all the considered reactions are reported, with the expression of their

reaction rates and the values of their pre-exponential factors and activation energies. The

notation Ci, (i = 1, . . . , 7 and i = 13), is adopted to denote the concentration of the

element Ei and the notation Cj , (j = 8, . . . , 12), is used for the concentration of dimer

Dj−8.

Addition

1) E1 + E2 → E3; R1 = k1C1C2.

2) E1 + E2 → E4; R2 = k2C1C2.

3) E3 + E2 → E5; R3 = k3C3C2.

4) E3 + E2 → E6; R4 = k4C3C2.
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5) E4 + E2 → E6; R5 = k5C4C2.

6) E5 + E2 → E7; R6 = k6C5C2.

7) E6 + E2 → E7; R7 = k7C6C2.

The values of the pre-exponential factors, k0,i, and of the activation energies, Ea,i are

reported in Table 1.3.

Parameter Value Parameter Value

k0,1 1.13 · 105 [m3 ·mol−1 · s−1] Ea,1 89.1 [kJ·mol−1]

k0,2 2.26 · 105 [m3 ·mol−1 · s−1] Ea,2 91.7 [kJ·mol−1]

k0,3 4.34 · 105 [m3 ·mol−1 · s−1] Ea,3 98.5 [kJ·mol−1]

k0,4 2.09 · 105 [m3 ·mol−1 · s−1] Ea,4 88.2 [kJ·mol−1]

k0,5 1.11 · 107 [m3 ·mol−1 · s−1] Ea,5 99.0 [kJ·mol−1]

k0,6 1.68 · 102 [m3 ·mol−1 · s−1] Ea,6 91.5 [kJ·mol−1]

k0,7 6.99 · 105 [m3 ·mol−1 · s−1] Ea,7 92.2 [kJ·mol−1]

Table 1.3: Parameters of addition reactions.

Condensation

The selected reactions are the following:

8) E1 + E3 → D0; R8 = k8C1C3

9) E1 + E3 → D0; R9 = k9C1C3

10) E1 + E4 → D0; R10 = k10C1C4

11) E1 + E4 → D0; R11 = k11C1C4

12) E1 + E5 → D1; R12 = k12C1C5

13) E1 + E5 → D1; R13 = k13C1C5

14) E1 + E6 → D1; R14 = k14C1C6

15) E1 + E6 → D1; R15 = k15C1C6

16) E1 + E6 → D1; R16 = k16C1C6
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17) E1 + E6 → D1; R17 = k17C1C6

18) E1 + E7 → D2; R18 = k18C1C7

19) E1 + E7 → D2; R19 = k19C1C7

20) E1 + E7 → D2; R20 = k20C1C7

21) E1 + E7 → D2; R21 = k21C1C7

22) E3 + E3 → D0 + E2; R22 = k22C
2
3

23) E3 + E3 → D1; R23 = k23C
2
3

24) E3 + E3 → D1; R24 = k24C
2
3

25) E3 + E4 → D0 + E2; R25 = k25C3C4

26) E3 + E4 → D1; R26 = k26C3C4

27) E3 + E4 → D1; R27 = k27C3C4

28) E3 + E4 → D1; R28 = k28C3C4

29) E3 + E5 → D1 + E2; R29 = k29C3C5

30) E3 + E5 → D2; R30 = k30C3C5

31) E3 + E5 → D2; R31 = k31C3C5

32) E3 + E5 → D2; R32 = k32C3C5

33) E3 + E6 → D1 + E2; R33 = k33C3C6

34) E3 + E6 → D1 + E2; R34 = k34C3C6

35) E3 + E6 → D2; R35 = k35C3C6

36) E3 + E6 → D2; R36 = k36C3C6

37) E3 + E6 → D2; R37 = k37C3C6

38) E3 + E6 → D2; R38 = k38C3C6

39) E3 + E6 → D2; R39 = k39C3C6

40) E3 + E7 → D2 + E2; R40 = k40C3C7
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41) E3 + E7 → D2 + E2; R41 = k41C3C7

42) E3 + E7 → D2 + E2; R42 = k42C3C7

43) E3 + E7 → D3; R43 = k43C3C7

44) E3 + E7 → D3; R44 = k44C3C7

45) E3 + E7 → D3; R45 = k45C3C7

46) E4 + E4 → D0 + E2; R46 = k46C
2
4

47) E4 + E4 → D1; R47 = k47C
2
4

48) E4 + E5 → D1 + E2; R48 = k48C4C5

49) E4 + E5 → D2; R49 = k49C4C5

50) E4 + E5 → D2; R50 = k50C4C5

51) E4 + E6 → D1 + E2; R51 = k51C4C6

52) E4 + E6 → D1 + E2; R52 = k52C4C6

53) E4 + E6 → D2; R53 = k53C4C6

54) E4 + E6 → D2; R54 = k54C4C6

55) E4 + E6 → D2; R55 = k55C4C6

56) E4 + E7 → D2 + E2; R56 = k56C4C7

57) E4 + E7 → D2 + E2; R57 = k57C4C7

58) E4 + E7 → D3; R58 = k58C4C7

59) E4 + E7 → D3; R59 = k59C4C7

60) E5 + E5 → D2 + E2; R60 = k60C
2
5

61) E5 + E5 → D3; R61 = k61C
2
5

62) E5 + E6 → D2 + E2; R62 = k62C5C6

63) E5 + E6 → D2 + E2; R63 = k63C5C6

64) E5 + E6 → D3; R64 = k64C5C6
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65) E5 + E6 → D3; R65 = k65C5C6

66) E5 + E6 → D3; R66 = k66C5C6

67) E5 + E7 → D3 + E2; R67 = k67C5C7

68) E5 + E7 → D3 + E2; R68 = k68C5C7

69) E5 + E7 → D4; R69 = k69C5C7

70) E5 + E7 → D4; R70 = k70C5C7

71) E6 + E6 → D2 + E2; R71 = k71C
2
6

72) E6 + E6 → D2 + E2; R72 = k72C
2
6

73) E6 + E6 → D2 + E2; R73 = k73C
2
6

74) E6 + E6 → D3; R74 = k74C
2
6

75) E6 + E6 → D3; R75 = k75C
2
6

76) E6 + E7 → D3 + E2; R76 = k76C6C7

77) E6 + E7 → D3 + E2; R77 = k77C6C7

78) E6 + E7 → D3 + E2; R78 = k78C6C7

79) E6 + E7 → D3 + E2; R79 = k79C6C7

80) E6 + E7 → D4; R80 = k80C6C7

81) E6 + E7 → D4; R81 = k81C6C7

82) E7 + E7 → D4 + E2; R82 = k82C
2
7

83) E7 + E7 → D4 + E2; R83 = k83C
2
7

84) E7 + E7 → D4 + E2; R84 = k84C
2
7

As aforementioned, the activation energies of these reactions have been considered

equal to an average value of 90 [kJ·mol−1]; the values of the pre-exponential factors, k0,i

are reported in Table 1.5.
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Addition of dimers

In this phase the dimers react with the formaldehyde to produce dimers characterized by

a different structure. Because of the use of aggregate dimers, these reactions are fictitious

and each of them represents a set of real reactions.

A85) D0 + E2 → D1; R85 = k85C8C2

A86) D1 + E2 → D2; R86 = k86C9C2

A87) D2 + E2 → D3; R87 = k87C10C2

A88) D3 + E2 → D4; R88 = k88C11C2

As for the condensation reactions, an average activation energy of 90 [kJ·mol−1] has been

considered as well. The pre-exponential factors are computed as average values of the

pre-exponential factors of addition reactions. Their values are reported in Table 1.4.

Parameter Value Parameter Value

k0,85 1.40 · 105 [m3 ·mol−1 · s−1] k0,86 2.41 · 105 [m3 ·mol−1 · s−1]

k0,87 2.20 · 105 [m3 ·mol−1 · s−1] k0,88 2.52 · 105 [m3 ·mol−1 · s−1]

Table 1.4: Pre-exponential factors of reactions of addition of dimers.

Condensation of dimers

In this phase the dimers react with the monomers. There are hundreds of possible reac-

tion, but, here, only this fictitious one is considered

7∑
i=1,i 6=2

Ei +
4∑
j=0

Dj → E13,

with reaction rate

R89 = k89

 7∑
i=1,i 6=2

Ci

 12∑
j=8

Cj

 .

The pre-exponential factor is an average values of the pre-exponential factors of the

selected condensation reactions and it has the value of k0,89 = 9.69 ·103 [m3 ·mol−1 · s−1].

As usual, the activation energy, Ea,89, is adopted equal to 90.0 [kJ·mol−1].
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1.5.3 Mass balances

Let us consider an ideal jacketed batch reactor, in which the phenol-formaldehyde reac-

tion takes place. The mathematical model for this system is given by the mass balances of

the thirteen chemical species and by the energy balances in the reactor and in the jacket.

The mass balances, according to equation (1.5), are the following:

Ċ1 = −R1 −R2 −R8 −R9 −R10 −R11 −R12 −R13 −R14 −R15 −R16

−R17 −R18 −R19 −R20 −R21 −
1
6
R89;

Ċ2 = −R1 −R2 −R3 −R4 −R5 −R6 −R7 −R85 −R86 −R87 −R88

+R22 +R26 +R29 +R33 +R34 +R40 +R41 +R42 +R47 +R50 +R51

+R54 +R58 +R59 +R60 +R62 +R63 +R67 +R68 +R71 +R72 +R74

+R76 +R77 +R78 +R79 +R82 +R83 +R84;

Ċ3 = −R3 −R4 −R8 −R9 − 2R22 − 2R23 − 2R24 −R25 −R26 −R27

−R28 −R29 −R30 −R31 −R32 −R33 −R34 −R35 −R36 −R37

−R38 −R39 −R40 −R41 −R42 −R43 −R44 −R45 −
1
6
R89 +R1;

Ċ4 = −R5 −R10 −R11 −R25 −R26 −R27 −R28 − 2R46 − 2R47 −R48

−R49 −R50 −R51 −R52 −R53 −R54 −R55 −R56 −R57 −R58

−R59 −
1
6
R89 +R2;

Ċ5 = −R6 −R12 −R13 −R29 −R30 −R31 −R32 −R53 −R54 −R55

−2R60 − 2R61 −R62 −R63 −R64 −R65 −R66 −R67 −R68

−R69 −R70 −
1
6
R89 +R3;

Ċ6 = −R7 −R14 −R15 −R16 −R17 −R33 −R34 −R35 −R36 −R37 −R38

−R39 −R48 −R49 −R50 −R51 −R52 −R62 −R63 −R64 −R65 −R66

−2R71 − 2R72 − 2R73 − 2R74 − 2R75 −R76 −R77 −R78 −R79

−R80 −R81 −
1
6
R89 +R4 +R5;

Ċ7 = −R18 −R19 −R20 −R21 −R40 −R41 −R42 −R43 −R44 −R45 −R56

−R57 −R58 −R59 −R67 −R68 −R69 −R70 −R76 −R77 −R78 −R79

−R80 −R81 − 2R82 − 2R83 − 2R84 −
1
6
R89 +R6 +R7;

Ċ8 = −R85 −
1
5
R89 +R8 +R9 +R10 +R11 +R22 +R26 +R47;
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Ċ9 = −R86 −
1
5
R89 +R12 +R13 +R14 +R15 +R16 +R17 +R23 +R24

+R25 +R27 +R28 +R29 +R33 +R34 +R46 +R50 +R51 +R54 +R85;

Ċ10 = −R87 −
1
5
R89 +R5 +R18 +R19 +R20 +R21 +R30 +R31 +R32

+R35 +R36 +R37 +R38 +R39 +R40 +R41 +R42 +R48 +R49 +R52

+R53 +R55 +R58 +R59 +R60 +R62 +R63 +R71 +R72 +R74 +R86;

Ċ11 = −R88 −
1
5
R89 +R43 +R44 +R45 +R56 +R57 +R61 +R64 +R65

+R66 +R67 +R68 +R73 +R75 +R76 +R77 +R78 +R79 +R87;

Ċ12 = −1
5
R89 +R69 +R70 +R80 +R81 +R82 +R83 +R84 +R88;

Ċ13 = R89.

1.5.4 Heat released by the reaction

In order to write the energy balance in the reactor (equation (1.8)), the following expres-

sion for the heat released by the reaction can be adopted

Q = −Vr∆Had

(
7∑
i=1

Ri +
88∑
i=85

Ri

)
− Vr∆Hcon

(
84∑
i=8

Ri +R89

)
, (1.19)

where Vr is the volume of the reactor; ∆Had and ∆Hcon are the average molar enthalpy

changes for the addition and condensation phases, respectively. The values of these pa-

rameter are ∆Had = −20.3 [kJ mol−1] and ∆Hcon = −98.7 [kJ mol−1], [46]. According to

equation (1.11), both the addition and the condensation reactions are exothermic.
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Parameter Value Parameter Value Parameter Value

k0,8 3.65 · 103 k0,9 3.01 · 103 k0,10 1.91 · 103

k0,11 2.31 · 103 k0,12 2.75 · 104 k0,13 2.28 · 104

k0,14 1.59 · 103 k0,15 1.32 · 103 k0,16 2.04 · 103

k0,17 1.68 · 103 k0,18 7.38 · 103 k0,19 6.10 · 103

k0,20 8.57 · 103 k0,21 7.08 · 103 k0,22 1.45 · 103

k0,23 1.83 · 104 k0,24 2.89 · 103 k0,25 9.17 · 102

k0,26 1.23 · 104 k0,27 5.81 · 103 k0,28 3.62 · 102

k0,29 1.09 · 104 k0,30 2.39 · 100 k0,31 6.92 · 104

k0,32 4.32 · 103 k0,33 6.32 · 102 k0,34 8.08 · 102

k0,35 7.86 · 103 k0,36 5.12 · 103 k0,37 4.00 · 103

k0,38 2.50 · 102 k0,39 3.19 · 102 k0,40 2.93 · 103

k0,41 3.40 · 103 k0,42 1.85 · 104 k0,43 2.15 · 104

k0,44 1.16 · 103 k0,45 1.34 · 103 k0,46 5.82 · 102

k0,47 1.56 · 104 k0,48 6.93 · 103 k0,49 9.29 · 104

k0,50 1.52 · 100 k0,51 5.12 · 102 k0,52 4.01 · 102

k0,53 5.37 · 103 k0,54 6.87 · 103 k0,55 4.98 · 103

k0,56 1.86 · 103 k0,57 2.15 · 103 k0,58 2.49 · 104

k0,59 2.89 · 104 k0,60 8.26 · 104 k0,61 3.61 · 10

k0,62 4.78 · 103 k0,63 6.10 · 103 k0,64 5.93 · 104

k0,65 1.05 · 100 k0,66 1.34 · 100 k0,67 2.21 · 104

k0,68 2.68 · 104 k0,69 4.48 · 100 k0,70 5.62 · 100

k0,71 2.76 · 102 k0,72 7.06 · 102 k0,73 4.51 · 102

k0,74 6.87 · 103 k0,75 8.78 · 103 k0,76 1.28 · 103

k0,77 1.49 · 103 k0,78 1.64 · 103 k0,79 1.90 · 103

k0,80 1.59 · 104 k0,81 1.85 · 104 k0,82 5.93 · 103

k0,83 1.38 · 104 k0,84 7.98 · 103

Table 1.5: Pre-exponential factors, in [m3 ·mol−1 · s−1], of condensation reactions.



Chapter 2

Identification of reaction dynamics

2.1 Introduction

Most nonlinear process control and diagnosis strategies require an explicit mathematical

model of process dynamics. Thus, control or diagnosis of the phenol-formaldehyde re-

action may require a reliable model of the reaction dynamics. Since the model of phenol-

formaldehyde reaction devised in Chapter 1 is characterized by 15 differential equations,

it could be unsuitable for on-line computations. Also, such a complex and high dimen-

sional model could be not useful to design control and diagnosis schemes. In fact, the

computational complexity of a control scheme grows rapidly as the model complexity

increases. For this reason, to control purposes, a model that satisfies two important crite-

ria is needed. First, it must be compatible, in structure and complexity with the require-

ments of the control system design methodology. The second criterion is that the model

must approximate the process dynamics well enough so as the resulting control system

will perform adequately in practice. In this thesis, an identification technique has been

adopted to estimate the parameters of a number of reduced-order models, able to effec-

tively predict the heat released by the reaction as well as the concentration of the desired

product.

2.2 Model identification

In general, a systematic approach to model identification consists of the following steps

[45, 63]:

1. generation of a set of input-output data;
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2. selection of a general class of models to be considered;

3. selection of a number of models to be fit;

4. estimation of model parameters;

5. validation of identified models.

The problem of model identification is not strictly a mathematical problem. In par-

ticular, the model structure selection, the choice of the parameter number and the model

validation involve considerable subjective judgement.

The input-output data can be obtained via an experimental procedure or via a simula-

tion study. In the first case the problem is to find the model that better fit the experimental

data; if the data are produced in simulation, the problem consists in finding a simplified

model which has a behavior as similar as possible to the complete one.

As regards the model structure, the following options should be considered [13, 45]:

• black-box model;

• parameter white-box model;

• hybrid grey-box model.

In the first case, the system is represented as an empirical input-output model, e.g.,

an ARMAX-type model or a model based on Artificial Neural Networks. The parameter

white-box models are based on the knowledge of the system dynamics and are character-

ized by some poorly known parameters to be estimated. The hybrid grey-box models are

a combination of the previous ones; they are characterized by a simplified structure based

on some qualitative knowledge of the system and by unknown parameters to be iden-

tified. All of these class of models have some advantages and some drawbacks: white

box models have the best performance, but they can be adopted only in the presence of a

deep knowledge of the system; empirical input-output models (black-box models) are the

simplest to obtain, but they, usually, are able to represent the system only in the expertise

domain in which the data are collected; grey box models allow to preserve the physical

sense of the system, but, due to the simplified structure, they lose some information with

respect to the white-box models.

Once a model structure is chosen, the parameters appearing in it must be estimated.

To this aim, an objective function, that determines the goodness of data fitting must be

selected. From maximum likelihood analysis, several alternative objective functions can
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be chosen. These can range from simple least-squares functions to fairly complex non-

linear functions, that incorporate general unknown covariance of the measurements (see

e.g., [6]). The final step is to optimize the model parameters in the objective function.

Since the optimization problem formed by the model and the objective function, may

require repeated and expensive solutions of differential equations, an efficient algorithm

should minimize the number of evaluations and, at the same time, converge easily to so-

lution. Usually, these algorithms require gradient information and some approximation

to the second derivatives matrix. For least-squares type objective functions, the Newton-

Raphson and the Levenberg-Marquardt algorithms provide the second derivative infor-

mation quite easily [11, 63].

In this Chapter, a general overview of the optimization methods for parameter iden-

tification and an application of these methods to the phenol-formaldehyde reaction are

presented.

2.3 Parameter estimation

Consider a system, whose input-output relationship is described by the function ζ : Rq →
Rm, and a set of input-output data D = {(xi,yi),xi ∈ Rq,yi ∈ Rm, i = 1, · · · , n}. The

output data yi and the input data xi are related by the following relationship

yi = ζ(xi) + εi

where εi models the effect of disturbances and measurement errors.

Let suppose that a certain model structureM(θ) has been selected, which is parametrized

via the parameters vector θ ∈ Rp. The set of candidate modelsM∗ is defined as

M∗ = {M(θ) : θ ∈ Rp}.

The search of the best model within the setM∗ becomes a problem of determining or

estimating the parameters vector θ. Hence, it is necessary looking for testing procedure

aimed at evaluating the different models ability to reproduce the experimental data.

Define n vectors of residual errors as (i = 1, · · · , n)

ri(θ) = yi − ŷi(θ), (2.1)

where ŷi(θ) is the output computed by the modelM(θ) corresponding to the input xi.
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The simplest way to describe the goodness of each model is the least-squares criterion.

This criterion leads to the following objective function

U(θ) =
n∑
i=1

‖ri(θ)‖2 =
n∑
i=1

m∑
j=1

r2
i,j(θ), (2.2)

where ri,j(θ) is the jth component of the vector ri(θ).

An alternative is represented by the weighted least-squares criterion, in which differ-

ent weights, wi,j , are assigned at the different residuals, ri,j(θ). The resulting objective

function is the following

U(θ) =
n∑
i=1

m∑
j=1

wi,j r
2
i,j(θ). (2.3)

The weighted least-squares criterion is useful when different measurement data are

characterized by different precision: in this case a suitable choice for the weights can be

the following

wi,j =
1
σ2
i,j

,

where σ2
i,j is the variance of the component jth of the measured value yi.

The value of the objective function (2.2) or (2.3) depends on the value of the parame-

ters vector. Hence, the parameters estimation problem becomes an optimization problem,

i.e., the target is to find the vector θ∗ that optimize the objective function.

2.4 Optimization algorithms for parameters estimation

Several algorithms have been developed to optimize the least-squares objective function,

[11,61,69]. The problem is relatively straightforward to solve for linear in the parameters

models, but it becomes more and more complex in the presence of models nonlinear in

the parameters. In this section the most used methods to solve the optimization problem

are presented.

2.4.1 Linear models

The linear regression model structure is very used in practice, in which the modelM(θ)

is characterized by the following structure

ŷ(θ) = Φ(x)θ, (2.4)
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where

ŷ(θ) =


ŷ1(θ)

ŷ2(θ)
...

ŷm(θ)

 , Φ(x) =


φ1 1(x) φ1 2(x) · · · φ1 p(x)

φ2 1(x) φ2 2(x) · · · φ2 p(x)
...

...
...

...

φm 1(x) φm 2(x) · · · φmp(x)

 , θ =


θ1

θ2

...

θp

 .

The optimal value of the parameters vector is given by the solution of the following

system of equations (k = 1, · · · , p)

∂U(θ)
∂θk

= 0. (2.5)

From equation (2.3) the following chain of equalities can be derived

∂U(θ)
∂θk

= −2
n∑
i=1

m∑
j=1

wi,j

[
(yi,j − ŷi,j(θ))

∂ŷi,j(θ)
∂θk

]
=

= −2
n∑
i=1

m∑
j=1

wi,j

[
ri,j

∂ŷi,j(θ)
∂θk

]
, (2.6)

where ŷi,j(θ) is the jth component of the vector ŷi(θ) obtained via (2.4) for x = xi.

For the linear regression model (2.4) the following is obtained

∂ŷi,j(θ)
∂θk

=
∂

∂θk

(
p∑

h=1

θhφj h(xi)

)
= φj k(xi). (2.7)

Therefore, equation (2.6) becomes

∂U(θ)
∂θk

= −2
n∑
i=1

m∑
j=1

wi,j [ri,jφj k(xi)] , (k = 1, · · · , p). (2.8)

Substituting the equation (2.8) in the equation (2.5) a system of linear equation in the

parameters is obtained. In matrix form it becomes

∂U(θ)
∂θ

= −2
(
yTWΨ− θTΨTWΨ

)
= 0, (2.9)

where

Ψ =


Φ(x1)

Φ(x2)
...

Φ(xn)

 , y =


y1

y2

...

yn

 ,

W = diag{W 1, · · · ,W n}, W j = diag{wj,1, · · · , wj,m}, j = (1, · · · , n).



Chapter 2. Identification of reaction dynamics 29

The solution of equation (2.9) can be obtained via the well-known left (weighted)

pseudoinverse of Ψ

θ∗ = (ΨTWΨ)−1ΨTWy. (2.10)

If the least-squares objective function (2.2) is adopted, the weight matrix W is the

identity matrix, and equations (2.9) and (2.10) become

∂U(θ)
∂θ

= −2
(
yTΨ− θTΨTΨ

)
= 0, (2.11)

θ∗ = (ΨTΨ)−1ΨTy. (2.12)

It is worth noticing that the solution (2.10), or (2.12), is the optimal solution, i.e., it

corresponds to the global minimum of the objective function.

2.4.2 Nonlinear models

For nonlinear in the parameters models the optimization problem is much more complex.

The optimization of the objective function, i.e., the best estimate of the parameters, is

obtained via iterative methods. These methods can be classified in [6]:

1. zero-order methods, based only on the values taken by the objective function at each

step;

2. first-order methods, based on the values taken by the objective function and of its

gradient at each step;

3. second-order methods, based on the values taken by the objective function, its gradi-

ent and its Hessian matrix (or an approximation of Hessian) at each step.

The zero-order methods are, generally, very inefficient to converge to the solution. A

number of gradient-based algorithms have been developed; they are characterized by

the computation of a search direction and by the determination of the step length to

take along this direction. The first and second-order algorithms may ensure efficient and

fast convergence of the algorithm, but they usually converge to a local minimum of the

objective function, i.e., they provide a sub-optimal solution. For this reason, they can give

different solution varying the initial estimate of the parameters vector, θ0. To overcome

this problem, it is advisable to compare the results obtained using different initial guesses

of the parameters vector.

In the following, the most used optimization algorithm are briefly described.
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2.4.2.1 Steepest descent algorithm

The steepest descent algorithm, proposed by Cauchy in 1845, is the simplest first-order

algorithm. The gradient vector of the objective function, ∇U(θ), represents the direction

of faster increasing of the function. Hence, if

θ = θ − κ∇U(θ), (2.13)

for a step size, κ > 0, small enough, then U(θ) ≤ U(θ). In this way a recursive law can

be adopted in order to compute a sequence of parameter vectors such as

θi+1 = θi − κ∇U(θi). (2.14)

The gradient computed in θi is the best direction only in the neighborhood of θi;

therefore this algorithm may require a large number of iterations to converge towards a

local minimum. In particular, it converges very slowly in the neighborhood of the mini-

mum. If the curvature of the objective function is very different along distinct directions,

a possible solution can be to adopt a different value for the step size, κ, at every iteration;

however finding the optimal value of κ for each step can be very time-consuming.

To overcome these drawbacks of the steepest descent, the second-order algorithms,

based on the inversion of the Hessian matrix, can be adopted.

2.4.2.2 Newton-Raphson algorithm

It is the simplest second-order algorithm. The function U(θ) may be approximated by

the linear portion of the Taylor’s series expansion, i.e.,

U(θ) ' U(θ0) +∇U(θ0)(θ − θ0) +
1
2

(θ − θ0)TH(θ0)(θ − θ0), (2.15)

whereH(θ) is the Hessian matrix, whose elements, hi j , are given by

hi j =
∂2U(θ)
∂θi∂θj

. (2.16)

The derivative of the function (2.15) yields

∂U(θ)
∂θ

= ∇U(θ0) +H(θ0)(θ − θ0) = 0. (2.17)

From equation (2.17) the value of the parameters vector can be obtained

θ = θ0 −H−1(θ0)∇U(θ0). (2.18)
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In order to obtain an iterative estimation law, equation (2.18) is corrected by introduc-

ing a step size, κ

θi+1 = θi − κH−1(θi)∇U(θi). (2.19)

The direction given by −H−1(θi)∇U(θi) is a descent direction only when the Hes-

sian matrix is positive definite. For this reason the Newton-Raphson algorithm is less

robust than the steepest descent, and thus does not guarantee the convergence towards a

local minimum. On the other hand, when the Hessian matrix is positive definite, and in

particular in a neighborhood of the minimum, the algorithm converges much faster than

the first-order methods.

2.4.2.3 Levenberg-Marquardt algorithm

This method interpolates between the Newton-Raphson algorithm and the steepest de-

scent. It is more robust than the Newton-Raphson algorithm, i.e., in many cases it is able

to find a solution even if starts very far off the minimum. On the other hand, for well

behaved functions and for reasonable starting points, it tends to be a bit slower than the

Newton-Raphson algorithm.

If the Hessian matrix is bad conditioned, the computation ofH−1(θ) becomes numer-

ically unstable and the solution may be brought to divergence. To overcome this problem,

several algorithms in which the Hessian matrix is replaced by a suitable positive definite

matrix G(θ) have been proposed. The most important of these algorithms was firstly

proposed by Kenneth Levenberg in 1944 [61], and then rediscovered and improved by

Donald Marquardt in 1963 [69].

In detail, the iterative law is given by

θi+1 = θi − κG−1(θi)∇U(θi), (2.20)

with

G(θi) = H(θi) + λiI, (2.21)

where I is the identity matrix having the same dimensions ofH(θ) and λi is a nonnega-

tive damping factor. The damping factor is of the utmost importance for the Levenberg-

Marquardt algorithm: if λi = 0, it coincides with the Newton-Raphson algorithm; if

λi >> 0 the matrix G(θi) is diagonal dominant and it means that G(θi)∇U(θi) ≈
λi∇U(θi), in other words the Levenberg-Marquardt algorithm coincides with the steep-

est descent method.
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Various more or less heuristic arguments have been put forward for the best choice

of the damping factor. Marquardt recommended to start with a reasonable high value

λ0 and a factor ν > 1 [69]. Initially, setting λ = λ0 the Levenberg-Marquardt algorithm

proceeds as the steepest descent method, then the damping factor can be reduced, step by

step, of a factor ν in such a way that in the neighborhood of the minimum the algorithm

proceeds as the Newton-Raphson one.

The Levenberg-Marquardt algorithm can be summarized in the following steps:

1. Choose a reasonable value of initial point θ0, an initial value of the damping factor

λ0 and a factor ν.

2. Set θ = θ0, λ = λ0.

3. Compute U(θ).

4. Using (2.20), compute θnew

5. Compute U(θnew) and compare with U(θ):

(i) if U(θnew) ≤ U(θ) the algorithm proceeds in the right direction, therefore set

θ = θnew and λ = λ/ν;

(ii) if U(θnew) ≥ U(θ) the algorithm proceeds in the wrong direction, therefore set

λ = νλ and return to step 4.

6. Repeat step 3− 4 until a minimum of the objective function is not found.

2.4.3 Implicit nonlinear models

Several systems can be represented only via implicit functions, for which it is very diffi-

cult, or sometimes impossible at all, obtain the explicit function ŷ(x,θ).

This is the typical case of chemical reactors, which are described via balance equations

of the following type
dŷ

dt
= Ω(t, ŷ,x,θ). (2.22)

Since for these models the explicit function ŷ(x,θ) to compare with the experimental

data is not available, it is also impossible to directly compute both the gradient and the

Hessian matrix of the least squares objective function.

Therefore, in order to apply the algorithms previously introduced for parameters es-

timation of implicit models, a procedure to obtain the gradient and the Hessian matrix,

based on the sensitivity coefficients, is reported [6, 11, 96].
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The kth component of the gradient vector of the objective function (2.3), has the form

∂U(θ)
∂θk

= −2
n∑
i=1

m∑
j=1

wi,j

[
ri,j

∂ŷi,j(θ)
∂θk

]
. (2.23)

By differentiating equation (2.23), the generic term, hk h of the Hessian matrix can be

obtained
∂2U(θ)
∂θk∂θh

= 2
n∑
i=1

m∑
j=1

wi,j
∂ŷi,j(θ)
∂θk

∂ŷi,j(θ)
∂θh

− 2
n∑
i=1

m∑
j=1

wi,jri,j
∂2ŷi,j(θ)
∂θk∂θh

. (2.24)

The second term contains the residuals ri,j ; assuming that the residuals are small,

the Hessian can be approximated only by the first term. This assumption can be always

done in a neighborhood of the minimum. Therefore, the following simplified form of the

Hessian can be considered
∂2U(θ)
∂θk∂θh

= 2
n∑
i=1

m∑
j=1

wi,j
∂ŷi,j(θ)
∂θk

∂ŷi,j(θ)
∂θh

. (2.25)

The term Sijk = ∂ŷi,j(θ)/∂θk is called sensitivity coefficient [6], and it is a measure of

the influence of the parameter θk on the jth component of the vector ŷ(xi,θ).

In order to obtain the gradient and the Hessian it is necessary obtain the sensitivity

coefficients. Differentiating both sides of equation (2.22) with respect to the parameter θk

the following equality is obtained

∂

∂θk

(
dŷi,j
dt

)
=
∂Ωi,j

∂θk
+

m∑
l=1

(
∂Ωi,j

∂ŷi,l

∂ŷi,l
∂θk

)
. (2.26)

Interchanging the order of differentiation yields

Ṡijk =
∂Ωi,j

∂θk
+

m∑
l=1

(
∂Ωi,j

∂ŷi,l
Silk

)
. (2.27)

In order to obtain the sensitivity coefficients, one must solve the model (2.22) together

with the set of differential equations given by (2.27), with the quantities ∂Ωi,j/∂θk and

∂Ωi,j/∂ŷi,l determined by simple differentiation. Equations (2.27) are called sensitivity

equations [6].

Once the values of the sensitivity coefficients are determined, the gradient and the

Hessian matrix, at each step of the optimization algorithm, can be easily computed via

equations (2.23) and (2.25), respectively.

∂U(θ)
∂θk

= −2
n∑
i=1

m∑
j=1

wi,jri,jS
i
jk , (2.28)

∂2U(θ)
∂θk∂θh

= 2
n∑
i=1

m∑
j=1

wi,jS
i
jkS

i
jh . (2.29)
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2.5 Model identification for the phenol-formaldehyde polymer-

ization

In this section the application of an identification technique for the parameters estimation

of a number of reduced order models, describing the phenol-formaldehyde reaction, is

presented.

2.5.1 Generation of input-output data

In order to simulate an experimental campaign and generate the experimental data set,

D, a simulation model of a jacketed batch reactor, in which the phenol-formaldehyde

reaction takes place, has been developed.

This model is a nonlinear implicit model, in the form (2.22), characterized by the

thirteen differential equations of the mass balances introduced in Section 1.5.3 and by the

energy balances written for the reactor and the jacket

Ṫr =
Q

ρrcprVr
− US

ρrcprVr
(Tr − Tj) , (2.30)

Ṫj =
US

ρjcpjVj
(Tr − Tj) +

F

Vj
(Tin − Tj) , (2.31)

where the heat released by the reaction Q is computed via equation (1.19).

The reaction, at µ different constant temperatures, has been simulated in the Matlab/

Simulink c© environment, and, for each temperature, the values of the concentration of

the 13 compounds and the heat released by the reaction, at ν different time instants, ti,

have been stored. More details regarding the values of µ and ν, the batch time of each

simulation and the sampling time will be presented in the Chapter 5.

The concentrations can be measured by drawing a sample of reacting mixture and

analyzing it off-line.

The heat released by the reaction can be obtained via calorimetric measures. The most

diffused industrial calorimeters are the so-called reaction calorimeters: basically they are

jacketed vessels in which the reaction takes place and the heat released is measured by

monitoring the temperature of the fluid in the jacket [27]. An alternative instrument is

the differential scanning calorimeter (DSC), in which the heat flow into a sample, usually

contained in a capsule, is measured differentially, i.e., by comparing it to the flow into

an empty reference capsule. The amount of heat required to increase the temperature

of the sample and the reference are measured as a function of temperature. Both the
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sample and reference are maintained at very nearly the same temperature throughout

the experiment. Generally, the temperature program for a DSC analysis is designed such

that the sample holder temperature increases linearly as a function of time [27].

In order to simulate a realistic industrial context, the following assumptions on the

set-up have been done:

• the initial temperature of the reactor is set to 20◦C;

• a PID controller, based on the feedback of the reactor temperature, has been used

to heat the reactor until the desired temperature and to keep it constant during the

reaction;

• gaussian white noise, with zero mean and variance equal to 5 ·10−3, is added to the

temperature measurements.

Finally, gaussian white noise is added both to the concentration measurements and to

the heat measurements.

In this way, two set of data DC and DQ have been generated, such as

DC =
µ⋃
h=1

DhC =
µ⋃
h=1

{(Cex
h (ti) + εC , Th), Cex

h (ti) ∈ R13, i = 1, · · · , ν},

DQ =
µ⋃
h=1

DhQ =
µ⋃
h=1

{(Qexh (ti) + εQ, Th), Qexh (ti) ∈ R, i = 1, · · · , ν},

where Ch(ti) and Qh(ti) are the vector of concentrations and heat released, respectively,

obtained at the time ti, when the reaction takes place at temperature Th, while εC and εQ

are the measurement noises. The total number of experimental data is given by n = µ×ν.

2.5.2 Selection of candidate models

The objective of the identification procedure is to obtain a simplified model able to repre-

sent the phenol-formaldehyde reaction as accurately as possible. To this aim a choice on

the compounds to be monitored has been done. Two different reaction schemes, involv-

ing four different chemical species and three and four reactions, respectively, have been

considered.

As regards the species, the simplified models involve the phenol, E1, the desired

product, E7, and two aggregate compoundsM andD, given by the sum of the remaining
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monomers and by the sum of dimers and trimers, respectively,

M =
6∑
i=3

Ei, D =
4∑
j=0

Dj + E13. (2.32)

The first kinetic scheme is a simple series reaction, the second one includes also a

parallel reaction. For each scheme both first order kinetics and second order kinetics

have been considered.

For the sake of simplicity, in the following, the candidate models will be denoted as

Model α and Model β.

Model α

The following reactions have been considered

E1 −→M −→ E7 −→ D. (2.33)

The addition phase has been represented as a reaction from phenol, E1, to the tri-

substituted phenol, E7, in which the other methylolphenols, M , are considered as inter-

mediate products. The formaldehyde is not considered.

In order to take into account the consumption of the desired product, E7, the conden-

sation of monomers has been considered via the reaction E7 −→ D.

The mass balances for the considered species are the following

ĊE1 = −R1

ĊM = R1 −R2 (2.34)

ĊE7 = R2 −R3

where CE1 , CM and CE7 are the concentrations of E1, M and E7, respectively, and Ri,

(i = 1, 2, 3) are the reaction rates. Denoting with ki the constant rates, given by the

Arrhenius law (1.2), the reaction rates are:

• First order kinetics

R1 = k1(Tr)CE1 , R2 = k2(Tr)CM , R3 = k3(Tr)CE7 . (2.35)

• Second order kinetics

R1 = k1(Tr)C2
E1
, R2 = k2(Tr)C2

M , R3 = k3(Tr)C2
E7
. (2.36)
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The heat released by the reaction for a unit volume is given by

Q = (−∆H1)R1 + (−∆H2)R2 + (−∆H3)R3, (2.37)

where ∆Hi are the molar enthalpy changes of the reactions in (2.33).

Model β

This model presents an additional reaction, in parallel to the series of reactions in the

previous model. Hence, the reaction scheme is the following:

E1 −→M −→ E7 −→ D

E1 +M −→ D (2.38)

The reaction E1 + M −→ D has been added so as to model the condensation phase,

more accurately. In fact, the production of dimers do not depend only by the tri-substituted

phenol, but also by the other monomers, M .

The mass balances are

ĊE1 = −R1 −R2

ĊM = R1 −R2 −R3 (2.39)

ĊE7 = R3 −R4

where the reaction rates are:

• First order kinetics

R1 = k1(Tr)CE1 , R2 = k2(Tr)CM ,

R3 = k3(Tr)CM , R4 = k4(Tr)CE7 .
(2.40)

• Second order kinetics

R1 = k1(Tr)C2
E1
, R2 = k2(Tr)CE1CM ,

R3 = k3(Tr)C2
M , R4 = k4(Tr)C2

E7
.

(2.41)

The heat released by the reaction for a unit volume is given by

Q = (−∆H1)R1 + (−∆H2)R2 + (−∆H3)R3 + (−∆H4)R4. (2.42)
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2.5.3 Parameters estimation

On the basis of equations (2.34), (3.40), (2.37) and (2.42), the unknown parameters to be

identified are:

• the pre-exponential factors, k0,i;

• the activation energies, Ea,i;

• the molar enthalpy changes, ∆Hi,

with i = 1, · · · , p, p = 3 for Model α and p = 4 for Model β.

The parameters identification problem has been divided into two sub-problems: first

the best kinetic parameters have been found, then the molar enthalpy changes have been

estimated.

2.4.3.1 Estimation of the kinetic parameters

The system of differential equations (2.34) or (3.40), containing the kinetic parameters, is

an implicit nonlinear model.

The following objective function has been adopted

Uk =
n∑
i=1

3∑
j=1

r2
i,j , (2.43)

where n is the number of experimental data and ri,j is the jth component of the vector ri

ri =


ri,1

ri,2

ri,3

 =


CexE1
− CE1

CexM − CM1

CexE7
− CE7

 , (2.44)

CexE1
, CexM and CexE7

are the experimental data and CE1 , CM and CE7 are the values com-

puted by the model.

The Levenberg-Marquardt algorithm has been adopted to perform the optimization;

the gradient and the Hessian matrix of the objective function have been computed via

equations (2.28) and (2.29).

Usually, pre-exponential factors and activation energies are characterized by differ-

ent orders of magnitude; this may generate numerical problems when they are identified
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simultaneously. To avoid these problems and improve convergence, a suitable transfor-

mation of the kinetic parameters can be used. In this thesis, the following reparameteri-

zation, proposed by [12], has been adopted

ϕ = ln(k0)− Ea
RT ∗

, (2.45)

ψ = ln
(
Ea
R

)
, (2.46)

where T ∗ is a reference temperature. The constant rate k with the new parameters be-

comes

k = exp
[
ϕ+ exp (ψ)

(
1
T ∗
− 1
T

)]
. (2.47)

The parameters ϕ and ψ, instead of k0 and Ea have been identified.

The best fit values of the parameters, the values of the algorithm parameters and the

initial parameters estimate are reported in the Chapter 5.

2.4.3.2 Estimation of the molar enthalpy changes

Once the kinetic parameters have been estimated, equations (2.37) and (2.42) become

linear in the unknown parameters ∆Hi. Therefore, it is possible to use the equation

(2.12) to compute the values of the molar enthalpy changes that minimize the following

objective function

UQ =
n∑
i=1

ρ2
i , (2.48)

where ρi = Qexi − Qi, Qexi is the measured value of the heat released by the reaction for

unity of volume and Qi is the value computed by the model.

The parameters have been estimated, first, by considering them as constant with re-

spect to the temperature. Then, in order to improve the heat estimation, they have been

estimated by assuming a dependence upon the temperature. In the following both the

procedures have been described.

Parameters constant with respect to the temperature

Referring to equation (2.12), the parameters vector is the following

θ = [∆H1, · · · ,∆Hp]
T , (2.49)

The best parameters estimate is given by the least-squares solution:

θ∗ = (ΨTΨ)−1ΨTy, (2.50)



Chapter 2. Identification of reaction dynamics 40

where Ψ is the (n× p) matrix

Ψ =


Ψ1

Ψ2

...

Ψµ

 , Ψh =


−Rh1(t1) · · · −Rhp(t1)

...
...

...

−Rh1(tν) · · · −Rhp(tν)

 ,

and Rhi (tj) is the reaction rate evaluated at time tj when the reaction takes place at the

constant temperature Th.

The (n× 1) vector y collects the experimental data

y =


y1

y2

...

yµ

 , yh =


Qexh (t1)

Qexh (t2)
...

Qexh (tν)

 .

Parameters variable with respect to the temperature

If ∆Hi are assumed to be variable with the temperature, µ different vectors of parameters,

θh =
[
∆Hh

1 , · · · ,∆Hh
p

]T , one for each considered temperature, are to be estimated.

For each vector, the estimate (2.50) becomes

θh∗ = (ΨT
hΨh)−1ΨT

hyh, (2.51)

where yh is the above defined (ν × 1) vector of experimental data obtained when the

reaction takes place at temperature Th.

Once the value of ∆Hi for each temperature has been estimated, an interpolating

polynomial function is considered such as

∆Hi(T ) = p0 + p1T + p2T
2 + · · ·+ pmT

m, (2.52)

∆Hh
i = p0 + p1Th + p2T

2
h + · · ·+ pmT

m
h ,

More details, such as the order of polynomial functions for each parameter, can be

found in the Chapter 5.

2.5.4 Model validation

The accuracy of the obtained models has been tested comparing their behavior with the

behavior of the complete model (see Section 1.5.3), when they are forced to track an as-

signed temperature profile.
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The comparison between the different models has been done on the basis of the root

mean squared error. For the concentration it is given by

RMSEC =

√√√√√√
m∑
i=1

[(
CcE1
− CsE1

)2 + (CcM − CsM )2 +
(
CcE7
− CsE7

)2]
m

, (2.53)

where the superscripts c and s denote the value computed by the complete model and by

the simplified model, respectively, and m is the number of samples.

For the heat released by the reaction the root mean squared error is given by

RMSEQ =

√√√√√√
m∑
i=1

(Qci −Qsi )

m
(2.54)

The results will be presented in the Chapter 5.



Chapter 3

Control

3.1 Introduction

Research on temperature control of batch reactors has been focused mainly on nonlinear

model-based control strategies, since approaches based on linearized models do not guar-

antee satisfactory performance. Early approaches to nonlinear control include differential

geometric approaches [55], nonlinear robust control [65,90], predictive control [57,72,78]

and Generic Model Control (GMC) [4, 15, 24, 58–60, 109].

In the presence of parametric model uncertainties, a few adaptive control strategies

have been proposed: in [44] a nonlinear controller, designed via a differential geometric

approach, is augmented with an indirect parameters estimation algorithm, while in [22]

an extended Kalmann filter is adopted. In [92], [104] and [41] three different approaches

to adaptive GMC have been proposed: in [92] an adaptive scheme is designed, based

on the minimization of the mismatch between process measurements and the predicted

reference trajectory; in [104] a Strong Tracking Filter is adopted to estimate the unknown

parameters, and the concept of input equivalent disturbance is used to further improve

the robustness of the control scheme; in [41] the estimation of some unknown quantities

–namely, the heat released by the reaction and the heat transfer coefficient– are estimated

by adopting the nonlinear adaptive observer proposed in [34]. Also, an adaptive cascade

temperature controller has been proposed in [97] for multiproduct jacketed stirred reac-

tors; the controller is based on a master/slave scheme, while the poorly known model pa-

rameters are updated via a suitable model-based estimator. Further developments have

been achieved in [102] and [103] by extending some of the previous adaptive approaches

to systems affected by input time delays.
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In this thesis, a novel controller-observer control strategy is proposed for a jacketed

batch reactor. First, an observer is designed to estimate the heat released by the reaction;

in order to improve the estimation accuracy, the heat transfer coefficient is adaptively

estimated. Then, a temperature control scheme is designed, based on the closure of two

control loops. Namely, an outer control loop, closed on the reactor temperature, com-

putes the reference signal for the inner control loop closed on the jacket temperature. The

two-loop arrangement improves the robustness of the scheme, while preserving a simple

structure for both the controllers. Also, tracking performance of the controller are fur-

ther improved by adopting an adaptive algorithm based on the on-line estimation of the

heat transfer coefficient. It must be remarked that the observer and the controller can be

designed and tuned separately. The scheme has been proposed in [17, 83] for a simple

series reaction, and it is generalized here for a class of irreversible consecutive reaction

schemes.

The convergence of the overall scheme, in terms of observer estimation errors and

controller tracking errors, is proven via a Lyapunov-like argument.

Furthermore, an alternative approach, in which the observer does not need the knowl-

edge of the reaction kinetics, is presented and its stability rigourously proven. In this ob-

server the heat released is approximated via a linear-in-the-parameters on-line approxi-

mator, based on an universal interpolator (e.g., a Radial Basis Functions Network).

Finally, the application of the proposed methods to the phenol-formaldehyde reac-

tion, reviewed in Chapter 1, will be presented.

3.2 Modeling

In this section the model of a jacketed batch reaction, in which takes place an irreversible

exothermic reaction, is presented and rewritten in the form of state equations.

Let us consider the following kinetic scheme, in which each reaction has been as-

sumed to be irreversible and exothermic

A1 −→ ν1,2A2

A1 −→ ν1,3A3 A2 −→ ν2,3A3

...
...

A1 −→ ν1,p+1Ap+1 A2 −→ ν2,p+1Ap+1 . . . Ap −→ νp,p+1Ap+1

where Ai denotes the ith chemical species, νi,h ≥ 0 is the stoichiometric coefficient of

the reaction Ai → Ah and Ap+1 is the final product. The above scheme represents a
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general irreversible non-chain reactions network, and can be reduced to simpler series

and/or parallel reaction schemes by assuming νi,h = 0 for the reactions to be eliminated.

Remarkably, the inclusion of all the significant reaction intermediates allows a correct

description of the system evolution to the final product, especially for the rate of heat

release as a function of system composition.

Assuming first-order kinetics and perfect mixing, the mass balances give

Ċ1 = −k1(Tr)C1

Ċ2 = ν1,2 k1,2(Tr)C1 − k2(Tr)C2

Ċ3 = ν1,3 k1,3(Tr)C1 + ν2,3 k2,3(Tr)C2 − k3(Tr)C3 (3.1)
...

Ċp = ν1,p k1,p(Tr)C1 + . . .+ νp−1,p kp−1,p(Tr)Cp−1 − kp(Tr)Cp

where Ci (i = 1 . . . p) is the concentration of the chemical species Ai, Tr is, as usual, the

reactor temperature and ki,h(Tr) (h = 2 . . . p), is the rate constant of the reaction Ai → Ah,

given by the Arrhenius law (1.2). Moreover, the lumped overall rate constants of the

reactions of disappearance, ki(Tr), are defined, for each reactant, as

ki(Tr) =
p+1∑
h=i+1

ki,h(Tr) , (3.2)

which are strictly positive if Ai is involved at least in one reaction.

Under the assumption of perfect mixing, the energy balances in the reactor and in the

jacket (see equations (1.8) and (1.10)) take the form

Ṫr = q(xM , Tr)−
US (Tr − Tj)
Vrρrcpr

, (3.3)

Ṫj =
US (Tr − Tj)
Vjρjcpj

+
(Tin − Tj)

Vj
F, (3.4)

where xM = [C1 . . . Cp]
T is the vector of reactants concentrations and the other variables

have been defined in Chapter 1. The heat released by the reaction,Q, is taken into account

via the term q, given by

q(xM , Tr) =
Q(xM , Tr)
Vrρrcpr

=

p∑
i=1

p+1∑
h=i+1

(−∆Hi,h)ki,h(Tr)Ci

ρrcpr
, (3.5)

where, as usual, ∆Hi,h is the molar enthalpy change of each reaction.
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It can be easily recognized that the rate constants are nonnegative and strictly increas-

ing functions of the reactor temperature Tr. Since the reaction is assumed to be exother-

mic and Tin is bounded, i.e., Tin,m ≤ Tin ≤ Tin,M , the temperature in the reactor is lower

bounded by the value

Tr,m = min {Tr,0, Tj,m} ,

where Tr,0 is the initial reactor temperature and Tj,m is the minimum attainable jacket

temperature, which coincides with the minimum attainable value, Tin,m, of Tin. More-

over, an upper bound for Tr can be computed by considering the ideal heating/reaction

scheme composed by the following two steps:

• the reacting mixture is first heated up to the maximum temperature value, Tin,M , of

the fluid entering the jacket,

• then, the complete reactants conversion takes place adiabatically.

The numerical value of the upper bound is then given by

Tr,M = Tin,M + C1,0
(−∆H1,p+1)

ρrcpr
,

where C1,0 is the initial concentration of A1. Hence, the rate constants are bounded as

follows

0 < k i,h ≤ ki,h(Tr) ≤ ki,h , ∀Tr , i = 1 . . . p , h = i+ 1 . . . p+ 1 , (3.6)

where k i,h = ki,h(Tr,m) and ki,h = ki,h(Tr,M ). Also, the above defined inequalities lead to

the following bounds for the rate constants ki

0 < k i ≤ ki(Tr) ≤ ki , ∀Tr , i = 1 . . . p , (3.7)

where k i =
p+1∑
h=i+1

k i,h and ki =
p+1∑
h=i+1

ki,h.

In order to rewrite the whole model in the form of state equations, let define the

(p+ 2)× 1 state vector

x =



C1

...

Cp

Tr

Tj


=



x1

...

xp

xp+1

xp+2


=

xM
xE

 ,
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the control input

u = Tin,

the output vector of measurable variables

y =

Tr
Tj

 =

y1

y2

 = xE

and the parameter

θ = US .

Then, equations (3.1), (3.3) and (3.4) can be rewritten in the following state-space form ẋ = A(y)x + b(y, u) + CTψ(y) θ

y = Cx ,
(3.8)

where the matrixA(y) is

A(y) =

 AM (y) Op×2

AM,E(y) O2×2

 ,
Om×n denotes the m× n null matrix, and

AM =


−k1 0 . . . 0

ν1,2 k1,2 −k2 . . . 0
...

...
...

...

ν1,p k1,p ν2,p k2,p . . . −kp

 ,

AM,E(y) =

a1(y1) . . . ap(y1)

0 . . . 0

 =

aT (y)

0Tp×1

 ,
ai(y) =

p+1∑
h=i+1

αi,hki,h(y1) , αi,h =
(−∆Hi,h)
ρrcpr

.

It is worth noticing that the off-diagonal terms in AM are nonnegative (for all Tr)

and may be null if the corresponding reactions Ai → Ah does not take place (νi,h = 0),

whereas all the terms on the main diagonal are strictly negative (for all Tr).

The vector b in (3.8) is defined as follows

b(y, u) =

 0p×1

bE(y, u)

 , bE =

 0

βj(u− y2)

 , βj =
F

Vj
,
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the vector ψ is given by (∗ = r, j)

ψ(y) =

−αr (y1 − y2)

αj(y1 − y2)

 , α∗ =
1

V∗ρ∗cp∗
,

and the output matrix is given by

C =
[
O2×p I2×2

]
,

where Im×n denotes the m× n identity matrix.

3.3 Estimation of the heat released by the reaction

From equation (3.8), it can be recognized that the heat released by the reaction affects the

dynamics of the reactor temperature via the term q(xM , Tr). In turn, this term depends on

the reactants concentrations, which are usually measurable at very low sampling rates,

not suitable for real-time control. Hence, the design of a model-based control law for the

reactor temperature should use an estimate of this term.

The heat released by the reaction can be estimated by adopting the approach known

as calorimetric method [14,91], in which the energy balance is used together with measured

values of temperature and its time derivative. In order to avoid numerical differentiation

of the temperature measurements, an observer can be used to estimate both the heat

released by the reaction and the heat-transfer coefficient (see, e.g., [22, 41]). In [22], a

nonlinear adaptive control strategy is adopted, based on an extended Kalmann filter to

achieve on-line estimation of the time varying parameters involved in the control law;

however, convergence and robustness of the overall scheme are not theoretically proven.

In [41] the estimation law suffers from singularities; moreover, the dynamics of the mass

balance in the reactor is not taken into account, since the heat released by the reaction is

estimated as an unknown parameter.

In the following three different approaches, based on adaptive observers, to estimate

the heat released by the reaction are presented, the first two are original contributions of

this thesis, the third is one of the most interesting approaches in the recent literature on

control of batch reactors. They are:

• A nonlinear adaptive observer is adopted to estimate the reactant concentrations

(i.e., the state variables x1, . . . , xp), while the heat transfer coefficient, usually as-

sumed unknown, is estimated via an adaptive update law. Then, the heat is recon-

structed from the estimated concentrations.
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• A model-free approach, based on the adoption of an universal interpolators, i.e., a

Radial Basis Function Network, for the estimation of the heat released by the reac-

tion. Differently from the previous approach, knowledge of the reaction kinetics is

not required.

• The model-free approach proposed in [41], in which both the heat transfer coeffi-

cient and the heat released by the reaction are estimated as unknown parameters.

As the previous, also this approach does not need the estimation of the concentra-

tions.

3.3.1 Model-based nonlinear observer

The observer has the form ˙̂x = A(y) x̂ + b(y, u) + Lỹ + CT ψ(y) θ̂o

ŷ = Cx̂
(3.9)

where x̂ denotes the vector of the state estimates; ŷ and ỹ = y − ŷ denote the vectors of

output estimates and output estimation errors, respectively; L is a (p + 2) × 2 matrix of

positive gains

L =

LM
LE

 , LM =


l1 0

l2 0
...

...

lp 0

 , LE =

lr 0

0 lj

 ,

and the estimate θ̂o of θ is given by the update law

˙̂
θo = λ−1ψT (y) ỹ, (3.10)

where λ is a positive gain setting the parameter estimate update rate.

Therefore, an estimate of q can be easily computed via (3.5) from the estimates of the

reactants concentrations

q̂(y, x̂) =
p∑
i=1

p+1∑
h=i+1

αi,h ki,h(y1) x̂i =
p∑
i=1

ai(y) x̂i = aT (y)x̂M . (3.11)

The convergence properties of both the state estimation error x̃ = x − x̂ and the

parameter estimation error θ̃o = θ − θ̂o are stated by the following theorem.
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Theorem 1. If the rate constants are bounded as in (3.6),(3.7), then, there exists a set of observer

gains such that the state estimation error x̃ is globally uniformly convergent to 0 as t → ∞ and

the parameter estimation error θ̃o is bounded for every t.

Proof. The dynamics of the estimation errors can be readily derived from equations (3.8)

and (3.9) 
˙̃x = Ao(y) x̃ + CT ψ(y) θ̃o
˙̃
θo = −λ−1ψT (y)C x̃

ỹ = Cx̃ ,

(3.12)

whereAo(y) = A(y)−LC. Let us consider the following positive definite function

Vo(x̃, θ̃o) =
1
2
x̃TP o x̃+

1
2
λ θ̃2

o , (3.13)

where P o is the following positive definite diagonal matrix

P o = diag {σ1, . . . , σp, 1, 1} ,

and the σi are constant positive values to be determined.

The derivative of Vo along the trajectories of the error dynamics is given by

V̇o = −
p∑
i=1

σi kix̃
2
i − lr x̃2

p+1 − lj x̃2
p+2+

p−1∑
i=1

p∑
h=i+1

σh νi,h ki,h x̃i x̃h +
p∑
i=1

(ai − σi li) x̃i x̃p+1+

ψT (y)C x̃θ̃o − λ
˙̂
θo θ̃o ,

where the dependence of the rate constants upon the temperature has been dropped

for notation compactness. By considering the update law (3.10) and the inequalities

in (3.6),(3.7), V̇o can be bounded as follows:

V̇o ≤ −
p∑
i=1

σi k ix̃
2
i − lr x̃2

p+1 − lj x̃2
p+2+

p−1∑
i=1

p∑
h=i+1

σh νi,h ki,h |x̃i| |x̃h|+
p∑
i=1

(ai + σi li) |x̃i| |x̃p+1|

= −
p−1∑
i=1

p∑
h=i+1

 |x̃i|
|x̃h|

T Ωi,h

 |x̃i|
|x̃h|

− p∑
i=1

 |x̃i|
|x̃p+1|

T Φi

 |x̃i|
|x̃p+1|

− lj x̃2
p+2 ,
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where

ai =
p+1∑
h=i+1

αi,hki,h.

The matrices on the right-hand-side of the above inequality

Ωi,h =


σi k i
p

−
σh νi,h ki,h

2

−
σh νi,h ki,h

2
σh k h
p

 ,

Φi =


σi k i
p

−ai + σi li
2

−ai + σi li
2

lr
p

 ,
are all positive definite if the gains satisfy the following inequality

lr > max
i=1,...,p

{
p2 (ai + σili)2

4σi k i

}
(3.14)

and the positive constants σi satisfy the inequalities

σi > max
h=i+1,...,p

{
p2 ν2

i,h k
2
i,h

4 k i k h
σh

}
, i = p− 1, . . . , 1 . (3.15)

Therefore, V̇o can be upper bounded as follows

V̇o ≤ −
p−1∑
i=1

p∑
h=i+1

ω i,h(x̃2
i + x̃2

h)−
p∑
i=1

φ
i
(x̃2
i + x̃2

p+1)− lj x̃2
p+2 , (3.16)

where ω i,h (φ
i
) is the smallest eigenvalue of Ωi,h (Φi). Thus,

V̇o ≤ −ζo ‖x̃‖2, (3.17)

where

ζo = min
{

(p− 1)ω + φ , p φ , lj
}
,

ω = min
i = 1, . . . , p− 1

h = i + 1, . . . , p

{
ω i,h

}
, φ = min

i=1,...,p

{
φ
i

}
.

Hence, V̇o is negative semi-definite: this guarantees boundedness of x̃ and θ̃o. By invok-

ing the Barbalat’s Lemma [53], it can be recognized that V̇o → 0, which implies global

uniform convergence to 0 of x̃ as t→∞, while θ̃o is only guaranteed to be bounded (see

Remark 1 hereafter).



Chapter 3. Control 51

Remark 1. As usual in direct adaptive estimation and/or control schemes, the conver-

gence to 0 of the parameter estimation error θ̃o is not guaranteed, unless the persistency of

excitation condition is fulfilled [3, 53]. In detail, if there exist three scalars λ1 > 0, λ2 > 0

and T > 0 such that:

λ1 ≤
∫ t+T

t
ψT (y(τ))ψ(y(τ)) dτ ≤ λ2 , ∀t ≥ 0 , (3.18)

then, both the state estimation error x̃ and the parameter estimation error θ̃o are globally

exponentially convergent to zero.

Remark 2. In the case of perfect knowledge of θ, the observer takes the form (3.9), where

the estimate θ̂o is replaced by the true value of the coefficient.

The above two remarks are of the utmost importance for evaluating the potential of

the proposed observer in a real set-up. In fact, exponential stability would ensure ro-

bustness of the state estimation against bounded and/or vanishing model uncertainties

and disturbances [53], due to inaccurate and/or incomplete knowledge of reaction kinet-

ics, as well as to usual simplifying assumptions adopted for the model derivation (e.g.,

perfect mixing).

3.3.2 Model-free approaches

When an accurate model of the reaction kinetics cannot be adopted (e.g., due to the lack

of reliable data for identification), the approach previously developed may be ineffec-

tive and different strategies (i.e., model-free) for the estimation of the heat released must

be adopted. Under this regard, the approach in [41] can be considered, where the heat

released by the reaction (seen as a further unknown parameter to be estimated) is esti-

mated, together with the heat transfer coefficient, via a suitably designed nonlinear ob-

server [34]. Other model-free approaches can be adopted, e.g., based on the adoption of

universal interpolators (neural networks, polynomials) for the direct on-line estimation

of the heat (see, e.g., the work in [18] and references therein), as well as purely neural ap-

proaches [10]. Also, the approaches based on the combination of neural and model-based

paradigms [1] or on tendency models [35] can be considered.

In the following two model-free approaches, based on adaptive observer will be pre-

sented: the first one is an original contribute of this thesis, the second one is the well-

established observer proposed by [34] and adopted for batch reactors by [41].



Chapter 3. Control 52

3.3.2.1 Approach based on universal interpolators

In order to present this observer, the state space equation referred to the vector xE is

rewritten as  ẋE = AE(θ)xE + ξ(xM ,xE) + bE(y, u)

y = xE
(3.19)

where bE(y, u) is the vector defined in section 3.2 and

AE(θ) =

−αrθ αrθ

αjθ −αjθ

 , ξ(xM ,xE) =

q(xM ,xE)

0

 .
The following observer can be adopted ˙̂xE = AE(θ̂o)x̂E + ξ̂(y,η) + bE(y, u) +LEỹ

ŷ = x̂E
(3.20)

where

AE(θ̂o) =

−αrθ̂o αrθ̂o

αj θ̂o −αj θ̂o

 , LE =

lr 0

0 lj

 , ξ̂(y,η) =

q̂(y,η)

0

 ,
and the estimate θ̂o of θ is given by the update law

˙̂
θo = λ−1ψT (ŷ) ỹ = λ−1

−αr(ŷ1 − ŷ2)

αj(ŷ1 − ŷ2)

T ỹ1

ỹ2

 . (3.21)

An approximation of the term q can be obtained via a linear-in-the-parameters on-line

approximator (see, e.g., [84], [108], [64])

q(y,η) =
w∑
i=1

ηi ϕi(y1) + ς = ηTϕ(y1) + ς, (3.22)

where ς represents the interpolation error, ϕi(y1) are w known basis functions and ηi are

the parameters assumed to be unknown and constant (or slowly varying). The vectors η

and ϕ(y1) are defined as

η =


η1

η2

...

ηw

 , ϕ(y1) =


ϕ1(y1)

ϕ2(y1)
...

ϕw(y1)

 .
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When an on-line interpolator is used to estimate the uncertain term, the interpolation

error ς can be kept bounded, provided that a suitable interpolator structure is chosen

(see, e.g., [38] and [42]).

Recently, neural networks have been widely used as universal approximators in the

area of nonlinear mapping and control problems, and, among them, Radial Basis Func-

tions Networks (RBFNs), are very interesting, because of their good performance despite

of their simple structure.

Therefore, in this thesis, Gaussian RBFs have been adopted

ϕi(y1) = exp
(
−|y1 − ci|2

2π2
i

)
, i = 1, . . . , w,

where ci and πi are the centroid and the width of the ith RBF function, respectively.

The parameters vector is estimated on-line by using the following update law

˙̂η = ω−1ϕ(y1) ỹ1, (3.23)

where ω is a positive gain.

In the absence of interpolation error (i.e., ς = 0), the convergence properties of both

the state estimation error x̃E = xE − x̂E and the parameters estimation error, θ̃o = θ− θ̂o
and η̃ = η − η̂, are stated by the following theorem.

Theorem 2. Under the assumption of absence of interpolation error, there exists a set of observer

gains such that the state estimation error x̃E is globally uniformly convergent to 0 as t→∞ and

the parameters estimation error θ̃o and η̃ are bounded for every t.

Proof. On the basis of equations (3.19), (3.20), (3.21) and (3.23), the dynamics of the esti-

mation errors has the form

˙̃xE = AE,o(θ) x̃E + ψ(ŷ) θ̃o + ξ̃(y, η̃)
˙̃
θo = −λ−1ψT (ŷ) ỹ

˙̃η = −ω−1ϕ(y1)ỹ1

ỹ = x̃E ,

(3.24)

whereAE,o = AE −LE and

ξ̃(y, η̃) =

q̃(y, η̃)

0

 =

η̃Tϕ(y1)

0

 .
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Let consider the following positive definite candidate Lyapunov function

Vo(x̃, θ̃o, η̃) =
1
2
x̃TEx̃E +

1
2
λ θ̃2

o +
1
2
ω η̃T η̃ , (3.25)

The derivative of Vo along the trajectories of the error dynamics is given by

V̇o = −(αrθ + lr)x̃2
E1
− (αjθ + lj)x̃2

E2
+ (αrθ + αjθ)x̃E1 x̃E2 +

ψ(ŷ)T ỹ θ̃o − λθ̃o
˙̂
θo + η̃Tϕ(y1)ỹ1 − ω η̃T ˙̂η ,

By considering the update laws (3.21) and (3.23), V̇o can be bounded as follows

V̇o ≤ −(αrθ + lr)x̃2
E1
− (αjθ + lj)x̃2

E2
+ (αrθ + αjθ)|x̃E1 ||x̃E2 |

= −

|xE1 |
|xE2 |

T  αrθ + lr −αr + αj
2

θ

−αr + αj
2

θ αjθ + lj

|xE1 |
|xE2 |

 . (3.26)

The matrix on the right hand-side of the above inequality is positive definite if the

gains satisfy the following inequality

lj >
(αr + αj)

2 θ2

4 (αrθ + lr)
− αjθ , (3.27)

Therefore, V̇o can be upper bounded as follows

V̇o ≤ −ζo‖xE‖2 (3.28)

where ζo is the minimum eigenvalue of the matrix of inequality (3.26).

Hence, V̇o is negative semi-definite: this guarantees boundedness of x̃, θ̃o and η̃. By

invoking the Barbalat’s Lemma [53], it can be recognized that V̇o → 0, which implies

global uniform convergence to 0 of x̃ as t→∞, while θ̃o is only guaranteed to be bounded

(see Remark 1).

Remarks 1 and 2 can be easily extended to this observer.

3.3.2.2 A well-established model-free approach

Finally, the well-established approach proposed by [41] will be presented. Here, the heat

released by reaction is considered as a further unknown parameter to be estimated, to-

gether with the heat transfer coefficient, via a suitably designed nonlinear observer [34].
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The term q̂ and θ̂o are obtained by means of the following observer

˙̂
T r

˙̂
T j

˙̂q
˙̂
θo


=


0 0 1 −αr(Tr − Tj)

0 0 0 αj(Tr − Tj)

0 0 0 0

0 0 0 0




T̂r

T̂j

q̂

θ̂o

+


0

βj(Tin − Tj)

0

0



+



2λq 0

0 2λθ

λ2
q

αr
αj
λ2
θ

0 1
αj(Tr−Tj)λ

2
θ


Tr − T̂r
Tj − T̂j

 ,
(3.29)

In the above observer, λq and λθ are suitable positive gains.

When (Tr−Tj)→ 0, the observer may suffer of singularities, due to the term
1

αj(Tr − Tj)
.

In order to cope with the singularities, (Tr − Tj) could be replaced by a constant value ε

when |Tr − Tj | ≤ ε.
A stability analysis of the observer (3.29), can be found in [34, 41].

3.4 Model-based controller

The controller scheme developed in this thesis is based on the Generic Model Control

(GMC). It is a well-established nonlinear model-based control approach [4,24,59], which

has been recently extended via adaptive techniques [22, 41]. The key idea of the GMC is

that of globally linearizing the reactor dynamics by acting on the jacket temperature Tj ,

which is, in turn, controlled by a standard linear (e.g., PID) controller. Since Tj does not

play the role of the input manipulated variable, the only way to impose an assigned be-

havior to the jacket temperature is that of computing a suitable set-point Tj,d to be passed

by a control loop closed around Tj . Usually, the mathematical relationship between the

jacket temperature and the set-point is assumed to be a known linear first-order differen-

tial equation, from which Tj,d is computed.

Here, no assumptions on the closed-loop behavior of the jacket temperature have

been done, and a two-loop control scheme is explicitly designed.

A first control loop (inner loop) is closed around the jacket temperature y2 = Tj , so as

to track a desired reference y2,d = Tj,d to be determined. Namely, the manipulated input
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variable u = Tin is computed as:

u =
ẏ2,d + gje2 − αj(y1 − y2)θ̂c

βj
+ y2, (3.30)

where e2 = y2,d − y2 is the tracking error, gj , is a positive gain and θ̂c is an estimate of θ

to be suitably computed.

Also, an outer control loop is closed around the reactor temperature so as to track

the desired reactor temperature profile y1,d = Tr,d. This can be done by computing the

reference y2,d of the inner loop as a function of the reactor temperature tracking error

e1 = y1,d − y1 and of the estimate of the heat released by the reaction as follows

y2,d = y1 +
ẏ1,d + gre1 − q̂

αrθ̂c
= y1 + ξ2,d , (3.31)

where q̂ is computed via one of the previously considered observers and gr is a positive

gain.

Figure 3.1: Block scheme of the control.

Let define e as the vector of the tracking errors

e =

e1

e2

 ,
and ψc as the vector

ψc(y) =

 −αrξ2,d

−αj(y1 − y2)

 .
Then, the update law for the estimate θ̂c is given by

˙̂
θc = γ−1ψTc (y) e, (3.32)

where γ is a positive gain setting the update rate of the estimate.
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3.5 Stability analysis of the controller-observer scheme

Let consider the controller with the observer (3.9). The convergence properties of the

error variables for the overall controller-observer scheme, including the parameter esti-

mation error θ̃c = θ − θ̂c, is stated by the following result.

Theorem 3. If the rate constants are bounded as in (3.6),(3.7), then, there exists a set of observer

gains such that the state estimation error x̃ and the tracking error e globally uniformly converge

to 0 as t→∞, for any positive set of control gains. Moreover, the parameter estimation errors θ̃o
and θ̃c are bounded for every t.

Proof. The closed-loop dynamics can be derived by plugging equations (3.30) and (3.31)

into (3.8) and taking into account that y2 = y2,d−e2 and θ̃c = θ− θ̂c (and thus, θ = θ̂c+ θ̃c)

ė = Ac e+ψc(y) θ̃c −Aco(y) x̃ , (3.33)

where

Ac =

−gr αrθ

0 −gj

 , Aco =
[
AM,E O2×2

]
.

Consider the following positive definite scalar function

V (x̃, e, θ̃o, θ̃c) = Vo(x̃, θ̃o) + δ Vc(e, θ̃c) ,

where Vo is the same function defined in (3.13), Vc is given by

Vc(e, θ̃c) =
1
2
eT e+

1
2
γ θ̃2

c , (3.34)

and δ > 0 is a positive constant to be determined.

The derivative of Vc along the closed-loop the trajectories of the system (3.12),(3.33) is

given by

V̇c = eT Ac e− eT Aco x̃+ψTc e θ̃c − γ
˙̂
θcθ̃c .

By taking into account the update law (3.32), V̇c becomes

V̇c = eT Ac e− eT Aco x̃ .

The derivative V̇c can be upper bounded as follows

V̇c ≤ −ζc‖e‖2 + ζc,o‖x̃‖‖e‖ ,
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where ζc = min{gr, gj} and (the constants ai are defined in (3.14))

ζc,o = max
i=1,...,p

{ai} .

Hence, V̇ can be upper bounded as follows

V̇ = V̇o + δ V̇c

≤ −ζo‖x̃‖2 − δζc‖e‖2 + δζc,o‖x̃‖‖e‖

= −

‖x̃‖
‖e‖

T ζo −δζc,o/2
−δζc,o/2 δζc

‖x̃‖
‖e‖

 .
The function V̇ is guaranteed to be negative semi-definite if the arbitrary positive con-

stant δ is chosen so as to satisfy the inequality

δ <
4ζoζc
ζ2
c,o

.

This guarantees boundedness of all error signals. By invoking the Barbalat’s Lemma

[53], it can be recognized that V̇ → 0, which implies global convergence to 0 of both

x̃ and e, while the parameters estimation errors θ̃o and θ̃c are only guaranteed to be

bounded.

Remark 3. Remarks 1 and 2 on the exponential stability of the estimation error dynamics

can be extended to the overall controller-observer scheme as well. Hence, robustness

with respect to effects due to modeling uncertainties (e.g., due to inaccurate knowledge

of the reaction kinetics) and/or disturbances is guaranteed.

Remark 4. Although the stability analysis considers the dynamics of the overall system

(i.e., the dynamics of both the observer and the controller), tuning of the observer gains

(L and λ) and of the controller gains (gr, gj and γ) can be achieved separately, since the

stability conditions do not put mutual constraints on the two set of gains.

Remark 5. As can be noted from (3.32), the estimate θ̂c used in the control law is different

from the estimate θ̂o computed by the observer. This is necessary, since the convergence

of the latter to θ is not guaranteed unless the persistency of excitation condition is ful-

filled. Hence, a different update law is adopted to ensure convergence of the controller

tracking errors. However, it can be easily recognized that a unique update law could

be adopted, ensuring convergence of both estimation and tracking errors. In this case,
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however, stability conditions will put mutual constraints on the observer and controller

parameters, and thus independent tuning of the two structures does not guarantee con-

vergence of the estimation/tracking errors.

Remark 6. The stability analysis has been developed for the controller in conjunction

with the observer (3.9). It can be easily verified that, if the observer (3.20) is considered

instead of observer (3.9), the stability of the overall scheme can be proven using similar

arguments.

3.6 Addition of an integral action

A slightly different version of the control laws (3.30) and (3.31), has been proposed in

[17, 83]. In particular, an integral term has been added to the control laws

u =
ẏ2,d+gp,je2+g i,j

∫ t
0 e2(τ)dτ−αj(y1 − y2)θ̂c
βj

+y2 , (3.35)

y2,d = y1 +
ẏ1,d + gp,re1 + g i,r

∫ t
0 e1(τ)dτ − q̂

αrθ̂c
= y1 + ξ2,d (3.36)

where gp,∗ and g i,∗ (∗ = r, j) are positive gains, θc is an estimate of the parameter θ

obtained via the update law
˙̂
θc = γ−1χTc (y)P cε, (3.37)

γ is a positive gain and the vectors ε and χc are defined as

ε =



∫ t
0 e1(τ)dτ

e1∫ t
0 e2(τ)dτ

e2

 , χc(y) =


0

−αr ξ2,d

0

−αj (y1 − y2)

 .

The matrix P c in (3.37) is symmetric and positive definite

P c =

P r O

O P j

 ,
and each matrix P ∗ (∗ = r, j) is the symmetric and positive definite solution of the Lya-

punov equations

AT
∗ P ∗ + P ∗A∗ = −N∗ , (3.38)
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where

A∗ =

 0 1

−g i,∗ −gp,∗

 ,
N∗ is a symmetric positive definite matrix satisfying

λm(N j) >
||P r||2 ||Arj ||2

λm(N r)
, (3.39)

Arj =

0 0

0 αrθ

 .
and λm(·) denotes the minimum eigenvalue of a matrix. Noticeably, since eachA∗ is Hur-

witz (for any choice of the control gains), the solution of the above Lyapunov equations

exist for any positive definite matrix N∗. This implies that solutions satisfying condi-

tion (3.39) always exist.

The convergence of this controller combined with the observer (3.9) has been proven

via a Lyapunov like argument in [83].

The presence of the integral in the control laws, could guarantee higher robustness

of the control scheme. On the other hand, the tuning becomes much more difficult with

respect to the tuning of the controller introduced in Section 3.4. In fact, the tuning of the

controller requires the calibration of five different gains, gp,∗ , g i,∗ (∗ = r, j) and γ, and the

choice of P c satisfying (3.39).

Moreover, with good tuning, not difficult to obtain with a trial-and-error procedure,

the controller in Section 3.4 achieves performance very close to the ones obtained using

(3.35) and (3.36).

3.7 Concluding remarks

The attractive and/or novel features of the proposed controller-observer approach can

be briefly reviewed:

• The approach is developed for a fairly wide class of processes, i.e., the class of

irreversible non-chain reactions characterized by first-order kinetics. Although this

is not the most general case, it encompasses several real reactive processes.

• A rigorous analysis of the main properties of the overall scheme (i.e., convergence

and robustness) has been provided. In detail: convergence of state estimation and

tracking errors is always guaranteed under mild assumptions. Moreover, when the
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(stronger) persistency excitation condition is fulfilled, exponential convergence of

all error signals is ensured. This, in turn, implies robustness of the proposed scheme

in the face of unmodeled effects.

• The use of an accurate and reliable state observer, which is necessary for the pro-

posed controller, can be advantageous for other purposes as well, (e.g., process

monitoring and fault diagnosis).

• Since the design and the tuning of the observer can be achieved independently

from the adopted controller, the latter can be adopted in conjunction with different

observers, e.g., the observers (3.20) and (3.29).

The proposed observer (3.9) needs a good knowledge of the reaction kinetics: this

may be regarded as a limitation for its practical application, where a certain degree of

mismatch between the modeled and the real reaction mechanism is always present. Nev-

ertheless, in the presence of bounded and/or vanishing uncertainties the property of ex-

ponential convergence ensures a certain degree of robustness of the controller-observer

scheme. In other words, if the mismatch between the model and the real kinetics is

bounded (vanishing), bounded (asymptotically convergent) estimation/tracking errors

are expected. Of course, modeling errors must be kept as small as possible, via suitable

modeling and identification techniques of the reaction dynamics (see Chapter 2).

When an accurate model of the reaction kinetics cannot be adopted the approach

based on the estimation of the heat released via an universal interpolator (3.20) could be

adopted. This observer may be adopted also in presence of a totally unknown kinetics.

3.8 Application to the phenol-formaldehyde reaction

The model-based controller-observer scheme requires to solve on-line the system of dif-

ferential equations of the observer. The phenol-formaldehyde reaction model is charac-

terized by fifteen differential equations and it could be unsuitable for on-line computa-

tions. To overcome this problem, a number of reduced-order models have been identified

in Chapter 2.

The stability analysis of the controller-observer scheme is based on the assumption

that the reactions are characterized by a first order kinetics. For this reason, one of the

model characterized by first-order kinetics must be chosen to represent the reaction dy-

namics.
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As will be shown in Chapter 5, the identified model that computes the best estimate

of the heat released is the Model β with second-order kinetics and molar enthalpy changes

variable with the temperature. Among the model with first-order kinetics, the best results

have been obtained via the Model α with the molar enthalpy changes variable with the

temperature.

The adoption of a simplified model of the reaction for the observer means unmodeled

dynamics will affect the controller-observer scheme. However, in presence of unmodeled

dynamics, due to the exponential convergence, the controller-observer scheme ensures a

certain degree of robustness and good results both in term of temperature tracking error

and control input.

The mass balances (3.1) become
ĊE1 = −k1(Tr)CE1

ĊM = k1(Tr)CE1 − k2(Tr)CM

ĊE7 = k2(Tr)CM − k3(Tr)CE7

(3.40)

while the heat released computed by the model is given by

Q = [(−∆H1(Tr))k1(Tr)CE1 + (−∆H2(Tr))k2(Tr)CM (3.41)

+(−∆H3(Tr))k3(Tr)CE7 ]Vr.

The state vector can be defined as

x =



x1

x2

x3

x4

x5


=



CE1

CM

CE7

Tr

Tj


,

and the matrixA(y) in equation (3.8) has the form

A(y) =



−k1(Tr) 0 0 0 0

k1(Tr) −k2(Tr) 0 0 0

0 k2(Tr) −k3(Tr) 0 0

a1(y1) a2(y1) a3(y1) 0 0

0 0 0 0 0


,

a1(y1, Tr) =
(−∆H1(Tr))k1(Tr)

ρrcpr
, a2(y1, Tr) =

(−∆H2(Tr))k2(Tr)
ρrcpr

,
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a3(y1, Tr) =
(−∆H3(Tr))k3(Tr)

ρrcpr
.

Simulations results, aimed at testing the effectiveness of the proposed approaches, as

well as at providing a comparative case study, are reported in the Chapter 5.
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Fault diagnosis

4.1 Introduction

Fault diagnosis in complex process plants is of utmost importance for human and plant

safety. In particular, in the chemical industry, faults can occur due to sensors failures,

equipment failures or changes in process parameters. Usually, faults in chemical pro-

cesses can have serious consequences in term of human mortality, environmental impact

and economic loss. Among the chemical processes, exothermic reactions in batch reactors

are the most dangerous processes. In the United Kingdom between 1962 and 1987 there

were 134 accidents in chemical plants due to run-away in batch reactors [7], and, among

them, 64 are due to polymerization reactions and 13 to phenol-formaldehyde reaction.

Fault diagnosis (FD) consists of three main tasks:

(i) fault detection, i.e., the indication of the occurrence of a fault;

(ii) fault isolation, i.e., the determination of the type and/or location of the fault;

(iii) fault identification, i.e., the determination of the magnitude of the fault.

After a fault has been detected, in some applications a controller reconfiguration for

the self-correction of the fault is required (fault accommodation). A control system with

this kind of fault-tolerance capability is defined as fault-tolerant control system. Fault

tolerant control has great importance in situations where the controlled system can have

potentially damaging effects on the environment if faults in its components take place,

for instance in hazardous chemical plants or nuclear plants.

The relative importance of three tasks are obviously depending by the application,

however the detection is an absolute must for any practical system. Fault identification,
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on the other hand, even if helpful, may not be essential if no reconfiguration action is

required.

In the last decades, the fault diagnosis has interested several researchers and has

grown as important research topic.

A traditional approach to fault diagnosis, in particular in dangerous contexts, is the

so-called physical redundancy, i.e., the duplication of sensors, actuators, computers and

softwares to measure and/or control a variable. Typically, a voting scheme is applied to

the redundant system to detect and isolate a fault. The physical redundant methods are

very reliable, but they need extra equipment and extra maintenance costs. Examples of

redundancy methods can be found in [29].

Due to the high costs of physical redundancy, in the last years, researchers focused

their attention on techniques that not require extra equipment. These techniques can be

roughly classified into two general categories: model-free data-driven approaches and

model-based approaches.

Among the model-free approaches, statistical techniques ( [31, 52, 56, 66, 67, 99, 105])

and knowledge-based expert systems ( [47, 70, 71, 75, 86–88, 101, 106]) have been widely

applied for chemical plants.

The model-based methods can be divided into quantitative methods and qualitative

methods. The researchers interest is focused mainly on quantitative methods, namely

approaches based on observers, parameters estimation and parity equations. These ap-

proaches are based on the concept of analytical or functional redundancy, i.e., they use a

mathematical model of the process to obtain the estimates of a set of variables character-

izing the behavior of the monitored system. The inconsistencies between estimated and

measured variables provide a set of residuals, sensitive to the occurrence of faults. Later,

the residuals are evaluated aiming at localizing the fault. Although there is a close re-

lationship among the quantitative model-based techniques, observer-based approaches

have become very important and diffused, especially within the automatic control com-

munity. Reviews of several model-based techniques for FD can be found in [20, 37, 76]

and, as for the observer-based methods, in [39, 77, 93].

The Figure 4.1 illustrates the physical and analytical redundancy.

The literature on FDI for chemical plants do not present a significant number of ap-

plications of observers: in [26] an unknown input observer is adopted for a CSTR, in [48]

and in [19] an extended Kalmann filter (EKF) is used, but in these works the FDI is per-

formed in open loop, while most chemical processes operate in closed-loop and the con-
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Figure 4.1: Physical versus Analytical redundancy.

trol action may affect the fault diagnosis system performance. A few papers deal with

observer-based FDI in the presence of conventional regulators: in [62] and [21] EKFs are

used for a distillation column and a CSTR, respectively, in [95] a generalized Luenberger

observer is presented. As regards the use of observers for FDI in the presence of advanced

control techniques, such as model predictive control or feedback linearizing control, only

in [93] may be found an unknown input observer adopted in conjunction with model

predictive control.

Interestingly enough, in [28] an approach based on physical redundancy is adopted

for fault detection purposes, while an analytical redundancy method is adopted to per-

form fault identification. A similar approach is presented in this thesis: under the as-

sumption of parallel physical redundancy of both reactor and cooling jacket sensors, a

bank of two diagnostic observers has been designed to generate a set of residuals achiev-

ing fault detection and isolation for sensor and actuator faults.

4.2 Basic Principles of model-based fault diagnosis

Model-based fault diagnosis consists on detection, isolation and identification of faults in

components of a system from the comparison of the system measurements with a priori

information given by the mathematical model of the system. The differences between the

real measurements, yi, and their estimates, ŷi, provided, for instance, by an observer, are



Chapter 4. Fault diagnosis 67

referred as residuals

ri = yi − ŷi, i = 1, · · · ,m, (4.1)

where m is the number of available measurements.

A model-based fault diagnosis system comprises two different stages: the residuals

generation and the decision making.

The residuals must be designed to be equal to zero under fault-free conditions and

nonzero under the occurrence of a fault. Since in practice residuals are never zero, due

to model uncertainties and parameters variations, usually, suitable thresholds, %i, are

adopted to avoid false alarms. The algorithm used to generate residuals is called residual

generator.

After the generation, residuals must be evaluated in order to detect and isolate a fault.

A decision process may consist of a simple threshold test on the instantaneous values or

it may consist of methods of statistical decision theory.

Figure 4.2: Model-based fault diagnosis.

Usually, the fault diagnosis is carried out during system operation, because the sys-

tem input and output information are only available when the system is in operation.

The information used for FDI are the measured output from sensor ad the input to the

actuators. In practice, the system model required in model-based fault diagnosis is the

open-loop system, hence, it is not necessary to consider the controller in the design of a

fault diagnosis scheme [20]. Figure 4.3 shows the relationship between the fault diagnosis

with the control loop.
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Figure 4.3: Fault diagnosis and control loop.

4.2.1 Fault isolation

Whilst a single residual may be sufficient to detect faults, a vector of residuals is usually

required for fault isolation. For isolation purposes, residuals should be generated in such

a way that each of them is affected only by a specific subset of faults and any fault affects

only a specific subset of residuals (structured residuals) [20, 40]. This concept can be ex-

pressed in a mathematical form introducing a boolean fault code vector ε and a boolean

structure matrix Λ [20, 79].

Let consider q different kinds of faults fj(t) and the (q × 1) fault vector, f(t)

f(t) =


f1(t)

...

fq(t)

 , (4.2)

for each fault fi(t) a boolean fault code vector can be defined as

εfi(t) =


εfi
1 (t)

...

εfi
m(t)

 , εfi
j (t) =

 1 if |rj(t)| ≥ %j
0 if |rj(t)| < %j

. (4.3)

Then, the (m× q) structure matrix Λ is defined as

Λ =
[
εf1 · · · εfq

]
. (4.4)

Defining

υ = Λf ,

the following conclusion can be obtained:

• if υi = 0 the residual ri is not affected by any fault;
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• if υi = fi(t) the residual ri is affected only by the fault fi(t);

• if υi = fi(t) + fj(t) the residual ri is affected by the faults fi(t) and fj(t) and not

affected by the other faults;

• and so on.

A fault fi(t) is called undetectable if the vector εfi is the null vector: this fault cannot

be detected using the residuals set defined in (4.1).

Two faults fi(t) and fj(t) are distinguishable if the vectors εfi and εfj are different.

4.2.2 Performance evaluation of a fault diagnosis system

Essentially, a FD system must avoid two kinds of errors: (i) false alarms and (ii) missed

alarms. A false alarm occurs when a fault is declared although no fault occurred; typi-

cally they can be due to model uncertainties and their occurrence may be reduced with

a suitable choice of the thresholds. To this aim, several adaptive thresholds have been

introduced, see, e.g., [108]. On the other hand, a missed alarm occurs when, under faulty

condition, the FD system does not detect anything; it may be due, for instance, to the

adoption of too wide thresholds.

Of course, false alarm and missed alarm avoidance are conflicting requirements: the

selection of the thresholds must be done as a compromise between them.

4.3 Fault classification

In the chemical process faults can be classified in process faults, sensor faults and actuator

faults.

A process fault occurs when there is an unexpected variation on a process parameters,

e.g., abrupt variation of the heat transfer coefficient due to foulness on reactor walls or

side reaction due to impurity in the raw material.

In this thesis only sensor and actuator faults have been considered. As above dis-

cussed, in FDI the open-loop system is adopted. For purposes of modeling, an open-loop

system can be separated into three parts: actuators, system dynamics and sensor (see

Figure 4.4).

Referring to the Figure 4.4, u is the known control command, ua is the actuator re-

sponse, y is the output of the system and ym is the known measured output, given by

the sensors.
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Figure 4.4: Open-loop system.

When, for the sake of simplicity, sensors and actuators dynamics and disturbs are

neglected, fault-free condition is characterized by the following relations

ym = y , ua = u .

A sensor fault can be described mathematically as (see Figure 4.5)

ym(t) = y(t) + f s(t) , (4.5)

where f s(t) is the sensor fault vector. By choosing the vector f s correctly it is possible

describe all sensor fault situations. For instance, an abrupt switch to zero of the measured

signal is described by f s(t) = −y(t), in such a way that ym = 0; for an abrupt constant

bias added to the measured signal the vector f s(t) = δy is added to the output and the

measured signal become ym(t) = y(t) + δy.

Figure 4.5: Sensor fault.

In a similar way, the actuator action in the presence of an actuator fault becomes (see

Figure 4.6)

ua(t) = u(t) + fa(t) , (4.6)

where fa is the actuator fault vector. Similar to sensor faults, different actuator faults

situations can be represented by a proper fault vector. For instance an abrupt constant
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bias on the actuator action can be represented via the vector fa(t) = δu, such as the

actuator action becomes ua = u + δu; if the actuator action is frozen at its current value

at a certain time instant, the fault vector becomes fa(t) = −u(t) and ua = 0.

Figure 4.6: Actuator fault.

4.4 Proposed FDI scheme

Because of the high level of risk involving highly exothermic chemical processes, sensors

for temperature monitoring are often duplicated in batch reactors. Hence, it is assumed

that a duplex sensor architecture is adopted for the plant. Namely, two temperature sen-

sors (hereafter labeled as Sr,1 and Sr,2) providing measurements of Tr, and two providing

measurements of Tj (hereafter labeled as Sj,1 and Sj,2) are available. In order to achieve

fault isolation, a bank of two observers has been adopted [2]; namely:

- the first observer, labeled as SM1, uses the measurements provided by Sr,1 and Sj,1

(i.e., ySM1 = (yr,1 yj,1)T ),

- the second observer, labeled as SM2, uses the measurements provided by Sr,2 and

Sj,2 (i.e., ySM2 = (yr,2 yj,2)T ).

As regards the observers architecture, both observer (3.9) and (3.20) may be adopted.

In [80], this FDI scheme has been proposed in conjunction with a robust observer. The

observers gain matrix LE are designed via aH∞ approach, so as to guarantee robustness

even in the presence of external disturbances and modeling errors, such as the uncer-

tainties on the parameter θ. The heat released by the reaction is estimated via the same

on-line linear-in-the-parameters approximator (3.22), adapted via (3.23).
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Different strategies have been designed for sensor faults and actuator faults. As re-

gards sensor faults, both detection and isolation can be achieved and the control system

can be reconfigured in such a way to end the batch process even in the presence of a

faulty sensor, without significant loss of quality of the final product. As regards actuators

faults only detection can be achieved.

4.4.1 Residuals generation

Four different residuals have been adopted for achieving detection and isolation.

The first couple of residuals may be defined, on the basis of the available measures,

as

rSr =
yr,1 − yr,2

µ1
, rSj =

yj,1 − yj,2
µ2

, (4.7)

where µ1 and µ2 are normalization factors to be properly determined.

The second couple of residuals can be obtained via the diagnostic observers as

rSM1 =
ỹSM1

ρ1
, rSM2 =

ỹSM2

ρ2
, (4.8)

where ρ1 and ρ2 are normalization factors to be properly determined and ỹSMi is the out-

put estimate error of the observer SMi (i = 1, 2).

4.4.2 Sensor faults

The defined residuals are able to achieve both detection and isolation when a sensor fault

occurs.

As detection residuals the quantities rSr and rSj can be adopted. Hence, if one of the

Sr (Sj) is affected by a fault, the norm of rSr (rSj ) is expected to exceed a certain threshold.

For isolation purposes of the sensor faults, the other couple of residuals, rSM1 and rSM2

may be used. If the norm of rSM1 (rSM2) exceeds a certain threshold, a fault is declared on

Sr,1 or Sj,1 (Sr,2 or Sj,2), depending on which detection residual exceeds the threshold. In

fact, the output of the SM1 observer is not affected by faults on Sr,2 and Sj,2, while the

output of the SM2 observer is not affected by faults on Sr,1 and Sj,1.

The normalization factors ρi and µi (i = 1, 2) are chosen by evaluating the effect

of disturbances and variations of the uncertain parameter on the residuals; they can be

set, e.g., on the basis of experimental data collected in healthy conditions and in the

presence of disturbances and variations of the uncertain parameter. By virtue of these
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normalization factors the thresholds on the residuals have been fixed to 1 and the infinity

norm 1 of vectors has been used to detect and isolate faults. In particular if ||rSM1||∞ > 1

(||rSM2||∞ > 1) for a fixed time interval, a fault is declared on the first (second) sensor.

4.4.3 Actuators faults

If an actuator fault occurs, in the absence of sensor failures, the norms of residuals rSr and

rSj remain below the thresholds but the observers dynamics are affected by the faulted

input, therefore the norms of both residuals rSM1 and rSM2 exceed the thresholds.

Concluding, an actuator fault is declared if both ‖rSr‖ and ‖rSj‖ are below the thresh-

olds and both ‖rSM1‖ and ‖rSM2‖ exceed the thresholds.

Of course, since in the proposed scheme actuator redundancy is not present, it is only

possible detect the actuator faults, but after a fault occurs it is not possible to brought to

completion the batch execution.

4.4.4 Decision Making System

The key point for faults detection and isolation is the design of a suitable Decision Making

System (DMS), which, on the basis of the available measurements (physical sensors) and

their estimates (virtual sensors), declares the occurrence of a fault, isolates the possible

faulty sensor, and outputs an healthy signal.

Let define the fault code vector

ε(t) =


εSr

εSj

εSM1

εSM2

, ε∗ =

 1 if ‖r∗(t)‖∞ ≥ 1

0 if ‖r∗(t)‖∞ < 1
, ∗ = {Sr, Sj , SM1, SM2}.

On the basis of the values that the vector ε(t) assumes during the batch execution the

DMS can declare and, eventually, isolate a fault. Under the assumption that simultaneous

faults on different sensors and/or on the actuator do not occur, the possible values that

the vector ε(t) can assume during a batch are summarized in Table 4.1, together with the

decision taken by the DMS for each situation.

Thanks to the sensor redundancy, the batch can be brought to completion even in

presence of a sensor fault, provided that a suitable voting of the correct signal is per-

formed. The logic of the Voter/Monitor (the sub-system of the DMS which votes the

1The infinity norm of a vector v is defined as ‖v‖∞ = maxi(|v(i)|)
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εSr εSr εSM1 εSM1 DMS Decisions

0 0 0 0 No fault declared

1 0 1 0 Fault declared on sensor Sr,1

1 0 0 1 Fault declared on sensor Sr,2

1 0 0 0 Fault declared but not isolated

0 1 1 0 Fault declared on sensor Sj,1

0 1 0 1 Fault declared on sensor Sj,2

0 1 0 0 Fault declared but not isolated

0 0 1 1 Fault declared on the actuator

Table 4.1: Decisions of DMS on the basis of the residuals.

correct signal) is described in the following procedure and diagramatically depicted in

Figure 4.7. As usual, the procedure is based on the assumption that simultaneous faults

on different sensors do not occur.

Voter procedure

Step 1. Compute the detection residuals defined in (4.7), then:

(i) If the residuals do not exceed the fixed thresholds (no fault condition), vote the sig-

nal given by the average of the two redundant sensors, i.e., the so-called standard

duplex measure.

(ii) If a threshold is exceeded (fault condition), check the isolation residuals defined

in (4.8), so as to decide if the faulty signal can be isolated; in this case determine the

healthy signal.

Step 2. If in the case (ii) faults isolation is not achieved (i.e., both rSM1 and rSM2 are below

the respective thresholds), a missed isolation is declared. In this case, the weighted av-

erage of the signals provided by the physical and virtual sensors is voted. The weighted

average is computed as the arithmetic mean of the measured variable and the output of

the sole observer not signaling the occurrence of the fault. �

It is of the utmost importance to guarantee that the worst-case performance of the

proposed scheme, in terms of voted signal, is not worse than those of a standard duplex

measure. Hence, a further elaboration of the residuals is performed. Namely, if the ab-

solute value of the difference between the weighted average and each sensor signal is
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Figure 4.7: DMS Voter Logic.

larger than the difference between the standard duplex measure and the sensor signals,

then the standard duplex measure is voted as healthy measure.

Of course, in the presence of an actuator faults, due the absence of actuator redun-

dancy, the batch must be stopped.

The DMS logic is then completed as follows:

- A rate limiter on the voted signal is adopted, so as to avoid sudden changes of the

signals due, for example, to abrupt faults.

- A step-by-step check verifies if one of the observers is brought to divergence. In

this case the related outputs are inhibited and the quadruplex scheme changes into

a triplex voter/monitor system.

- If the measurements variance exceeds a prespecified value, a fault is signaled. This

check is introduced because high frequency (and zero mean) additive faults may be

filtered by the observer dynamics, causing missed alarms.

- Variations of logical signals are taken into account only if they remain constant for

a fixed time window.
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Case studies

5.1 Introduction

In order to prove the effectiveness of the identification, control and diagnosis approaches,

proposed in this thesis, a detailed simulation model of a batch reactor has been devel-

oped. The identification techniques, described in Chapter 2, have been applied to the

phenol-formaldehyde reaction, in order to obtain simplified models, suitable for model-

based control design. These models have been validated on the basis of the root mean

squared error, both for concentrations estimation and for heat estimation, obtained when

they are forced to track an assigned temperature profile. To this aim, a number of test

profiles have been selected.

Then, the first-order model that achieves the best performance in term of concentra-

tions and heat estimates, has been adopted to design the model-based observer (3.9). The

model-based observer-controller scheme performance have been compared with the ones

obtained by using the model-free observer (3.20) and the observer proposed by [41].

Finally, some sensor and actuator faults have been simulated on the plant and the

fault diagnosis technique described in Chapter 4 has been tested, using both the observer

(3.9) and the observer (3.20).

5.2 Simulation model

The simulation model has been developed in the Matlab/Simulink c© environment. The

reaction phenol-formaldehyde has been simulated considering the system of differential

equations given by the 13 mass balances written in Section 1.5.3. The heat released by the
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Parameter Value Parameter Value

Vr 6 [m3] Vj 1.729 [m3]

U 0.7205 [kJ m−2 s−1 K−1] S 15.961 [m2]

θ 11.5 [kJ s−1 K−1] R 0.0083 [kJ mol−1 K−1]

ρr 1.0 · 103 [kJ m−3 K−1] ρj 1.0 · 103 [kJ m−3 K−1]

cpr 1.712 · 103 [kJ m−3 K] cpj 4.19 · 103 [kJ m−3 K]

CE1(0) 4200 [mol m−3] CE2(0) 8400 [mol m−3]

Tr(0) 293.15 [K] Tj(0) 293.16 [K]

Tj,min 285 [K] Tj,max 370 [K]

F 0.1 [m3 s−1]

Table 5.1: Simulation parameters.

reaction has been computed via equation (1.19).

Some assumptions on the experimental set-up have been done. A geometric model of

the reactor and the cooling jacket has been built, characterized by the values in Table 5.1.

The energy balances for the reactor and the jacket are given by the equations (1.8) and

(1.10). For the values of the mass heat capacities, it has been considered that the cooling

fluid is water and, for the reactant mixture, the value in [82] has been adopted.

In order to simulate a realistic industrial context, where several parameters are un-

certain and/or bounded by physical limitations, the following assumptions on the actu-

ator and the sensors have been done. The temperature of the water entering the jacket

ranges from Tin,m = 285 [K] to Tin,M = 370 [K]; the water flow rate is fixed and equal to

F = 0.1 [m3 s−1]; moreover a first-order linear dynamics (with a time constant of 2 [s])

between the commanded control input (computed by the controller) and the real tem-

perature of the water entering the jacket has been introduced in the simulation model.

Concerning the sensor equipment, only the reactor temperature and the jacket tempera-

ture are measured, while direct measurements of the concentrations and/or of the heat

released by the reaction are not available in real-time. Also, gaussian white noise with

zero mean and variance of 5 · 10−3 is added to the temperature measurements.

Finally some initial conditions for the reactant concentrations and the temperatures

of the vessel and the jacket are assumed, and these values are reported in Table 5.1.
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5.3 Identification of the reaction kinetics

In order to obtain the set of experimental data, as described in Section 2.5.1, the phenol-

formaldehyde reaction has been simulated at nine different constant temperatures

(T ={60◦C, 65◦C, 70◦C, 75◦C, 80◦C, 85◦C, 90◦C, 95◦C, 100◦C}) and the batch time has been

specified as tb = 15 hours. A PID controller, based on the feedback of the reactor tem-

perature, has been used to heat the reactor until the desired temperature and to keep it

constant during the reaction. The PID parameters, tuned via trial-and-error procedure,

are KP = 9 · 10−4, KI = KD = 10−7. The actuator and the temperature sensors are

characterized by the features described in the previous Section. For each temperature,

the values of the concentrations of the 13 compounds, at 71 different time instants, ti,

have been measured: the first instant is the initial time (t0 = 0), then, in the first hour 12

samples have been collected with a 5 minutes step, in the second hour 6 samples have

been collected with a 10 minutes step, and, in the following hours, 4 samples per hour

have been collected with a 15 minutes step. Different steps for the first hours have been

selected, because in these hours the reaction is much more faster than in the following,

due to the higher concentrations of reactants. In practice, since the concentrations can be

measured only off-line, it has been supposed that at each instant ti a sample of reacting

mixture has been drawn and analyzed. Finally, in order to simulate the measurement

errors, gaussian white noise has been added to the concentration measurements (zero

means and variance equal to 102).

As regards the heat released by the reaction, it has been supposed that, at the same

nine constant temperatures, the reaction occurred in a calorimeter and the value of the

heat released for a unit volume at the instants ti, has been collected [91]. In order to

simulate the measurement errors, gaussian white noise has been added to the heat values

(zero means and variance equal to 10).

In this way a total number of 639 samples has been considered both for the concen-

tration and for the heat estimation.

5.3.1 Estimation of kinetic parameters

The kinetics parameters to be estimated are the parameters ϕi and ψi (i = 1, . . . , p, and

p = 3 for Model α and p = 4 for Model β), defined in (2.45) and (2.46). The reference

temperature for the parameters ϕi has been assumed equal to T ∗ = 353.15 [K].

The Levenberg-Marquardt algorithm (2.20) has been adopted with the following val-
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ues for the algorithm parameters: the step size κ = 0.10, the initial damping factor

λ0 = 1000 and ν = 10.

The identification procedure has been replicated for different initial values of the pa-

rameters. For the parameters ϕi initial values of −20 or −25 have been considered, while

for the parameters ψi initial values of 8.5 or 9.5 have been chosen. Therefore, for the Model

α, in which there are 6 parameters to be estimated, 64 different replication have been con-

sidered; for Model β, in which there are 8 parameters to be estimated, 256 replication with

different initial conditions have been done.

The parameters that achieve the best fit of the data set, together with the initial condi-

tions and the value of the objective function (2.43) for Model α and Model β, are reported

in Tables 5.2 and 5.3, respectively, where ϕ0
i and ψ0

i are the initial estimates of ϕi and ψi.

Model α first-order kinetics α second-order kinetics

Objective Function 1.178 · 108 9.725 · 106

ϕ0
1 −20 −25

ψ0
1 9.5 9.5

ϕ0
2 −20 −25

ψ0
2 9.5 9.5

ϕ0
3 −20 −20

ψ0
3 9.5 9.5

ϕ1 −9.499 −17.333

ψ1 9.144 9.259

ϕ2 −10.433 −18.160

ψ2 8.854 9.145

ϕ3 −10.094 −17.527

ψ3 8.569 8.880

Table 5.2: Best fit kinetic parameters for Model α.

The best fit parameters may be expressed in terms of pre-exponential factors and

activation energies; the resulting values are reported in Tables 5.4 and 5.5.

5.3.2 Estimation of the molar enthalpy changes

Once the kinetic parameters have been estimated, the expression of the heat released

becomes linear in the unknown parameters ∆Hi. Therefore, it is possible to use equation
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Model β first-order kinetics β second-order kinetics

Objective Function 1.223 · 108 9.864 · 106

ϕ0
1 −20 −25

ψ0
1 8.5 9.5

ϕ0
2 −25 −20

ψ0
2 9.5 8.5

ϕ0
3 −25 −25

ψ0
3 8.5 8.5

ϕ0
4 −25 −25

ψ0
4 9.5 9.5

ϕ1 −9.518 −17.325

ψ1 9.045 9.268

ϕ2 −74.224 −20.809

ψ2 10.309 9.052

ϕ3 −10.403 −18.223

ψ3 8.909 9.151

ϕ4 −10.238 −17.706

ψ4 8.732 9.009

Table 5.3: Best fit kinetic parameters for Model β.

(2.12) to compute the values of the molar enthalpy changes that minimize the objective

function (2.48). Following the procedure described in Section 2.4.3.2, the molar enthalpy

changes have been estimated first as constant values, then, in order to improve the heat

estimation, as parameters dependent upon the temperature.

In Tables 5.6 and 5.7, are reported the values obtained for the molar enthalpy changes

considered as constants.

It is worth noticing that for the Model β with first-order kinetics, the molar enthalpy

change ∆H2 is negligible.

When the molar enthalpy changes are considered as parameters dependent upon the

temperature, a value for each temperature has been estimated and, then, an interpolating

polynomial function has been considered. The values of the parameters for each tem-

perature are reported in Tables 5.8-5.11. Since the values of the parameter ∆H2 for the

Model β with first-order kinetics is negligible, they are not reported in the Table 5.10. The
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Model α first-order kinetics α second-order kinetics

k0,1 2.416 · 107 [s−1] 2.396 · 105 [m3 ·mol−1 · s−1]

Ea,1 77.850 [kJ mol−1] 87.312 [kJ mol−1]

k0,2 1.203 · 104 [s−1] 4.319 · 103 [m3 ·mol−1 · s−1]

Ea,2 58.253 [kJ mol−1] 77.944 [kJ mol−1]

k0,3 1.236 · 102 [s−1] 1.687 · 10 [m3 ·mol−1 · s−1]

Ea,3 43.807 [kJ mol−1] 59.793 [kJ mol−1]

Table 5.4: Kinetic parameters for Model α: pre-exponential factors and activation energies.

Model β first-order kinetics β second-order kinetics

k0,1 1.950 · 106 [s−1] 3.188 · 105 [m3 ·mol−1 · s−1]

Ea,1 70.512 [kJ mol−1] 88.128 [kJ mol−1]

k0,2 4.570 · 104 [s−1] 2.881 · 10 [m3 ·mol−1 · s−1]

Ea,2 249.582 [kJ mol−1] 71.008 [kJ mol−1]

k0,3 3.804 · 104 [s−1] 4.732 · 103 [m3 ·mol−1 · s−1]

Ea,3 61.546 [kJ mol−1] 78.397 [kJ mol−1]

k0,4 1.500 · 103 [s−1] 2.320 · 102 [m3 ·mol−1 · s−1]

Ea,5 51.562 [kJ mol−1] 68.019 [kJ mol−1]

Table 5.5: Kinetic parameters for Model β: pre-exponential factors and activation energies.

interpolating polynomial functions are reported in the following; they are expressed in

terms of the temperature normalized with respect to the mean value (µ) and the standard

deviation (σ) of the set of temperatures T

Tn =
T − µ
σ

.

Cubic or 4th degree polynomial function have been adopted. In particular, the 4th

degree polynomial function has been adopted when the cubic function achieves poor

interpolating performance. Since the data set is referred only to the range of temperature

between 60◦C and 100◦C, the polynomial functions fi(T ) are able to interpolate the true

values of the molar enthalpy changes only in this range. To overcome this drawback, for

all the models the following assumptions have been done (i = 1, · · · , p)

∆Hi(T ∗) =


∆Hi(60◦C) if T ∗ ≤ 60◦C ,

fi(T ∗) if 60◦C < T ∗ < 100◦C ,

∆Hi(100◦C) if T ∗ ≥ 100◦C
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Model α first-order kinetics α second-order kinetics

∆H1 −40.646 [kJ mol−1] −26.178 [kJ mol−1]

∆H2 −10.510 [kJ mol−1] −66.200 [kJ mol−1]

∆H3 −21.372 [kJ mol−1] 19.690 [kJ mol−1]

Table 5.6: Molar enthalpy changes for Model α.

Model β first-order kinetics β second-order kinetics

∆H1 −44.395 [kJ mol−1] −19.876 [kJ mol−1]

∆H2 1.612 · 10−14 [kJ mol−1] −1647.3 [kJ mol−1]

∆H3 −2.087 [kJ mol−1] 6.4777 [kJ mol−1]

∆H4 −26.897 [kJ mol−1] −20.768 [kJ mol−1]

Table 5.7: Molar enthalpy changes for Model β.

Model α first-order kinetics

T 60◦C 65◦C 70◦C 75◦C 80◦C 85◦C 90◦C 95◦C 100◦C

∆H1 −24.72 −26.50 −29.20 −31.97 −34.84 −37.28 −39.81 −41.84 −43.75

∆H2 −40.04 −40.14 −34.43 −26.24 −19.57 −15.11 −12.23 −9.92 −7.94

∆H3 37.78 36.60 23.36 6.81 −5.68 −13.63 −19.15 −23.39 −27.04

Table 5.8: Molar enthalpy changes variable with the temperature for Model α with first-order

kinetics.

Model α first-order kinetics

The molar enthalpy changes are represented via the following polynomial functions

• ∆H1(T ) = p1,1T
3
n + p1,2T

2
n + p1,3Tn + p1,4,

• ∆H2(T ) = p2,1T
4
n + p2,2T

3
n + p2,3T

2
n + p2,4Tn + p2,5,

• ∆H3(T ) = p3,1T
4
n + p3,2T

3
n + p3,3T

2
n + p3,4Tn + p3,5,

where

p1,1 = 0.460; p1,2 = 0.248; p1,3 = −7.513; p1,4 = −34.656;

p2,1 = 2.762; p2,2 = −2.612; p2,3 = −7.885; p2,4 = 16.642; p2,5 = −19.700;

p3,1 = −5.528; p3,2 = 4.305; p3,3 = 16.889; p3,4 = −31.635; p3,5 = −5.542.
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Model α second-order kinetics

T 60◦C 65◦C 70◦C 75◦C 80◦C 85◦C 90◦C 95◦C 100◦C

∆H1 −20.43 −21.52 −22.97 −24.17 −25.39 −25.95 −26.56 −26.54 −26.36

∆H2 −125.1 −94.16 −79.79 −70.58 −66.65 −66.16 −67.09 −67.03 −65.55

∆H3 1112.6 291.65 108.65 50.94 31.86 24.28 20.94 18.60 16.64

Table 5.9: Molar enthalpy changes variable with the temperature for Model α with second-order

kinetics.

Model β first-order kinetics

T 60◦C 65◦C 70◦C 75◦C 80◦C 85◦C 90◦C 95◦C 100◦C

∆H1 −21.67 −24.19 −27.70 −31.46 −35.52 −39.28 −43.27 −46.83 −50.34

∆H3 −41.54 −41.32 −35.39 −26.24 −17.75 −10.84 −5.00 0.735 6.64

∆H4 41.46 39.75 25.02 6.72 −7.35 −16.69 −23.70 −29.75 −35.72

Table 5.10: Molar enthalpy changes variable with the temperature for Model β with first-order

kinetics.

Model α second-order kinetics

The molar enthalpy changes are represented via the following polynomial functions

• ∆H1(T ) = q2,1T
3
n + q2,2T

2
n + q2,3Tn + q2,4,

• ∆H2(T ) = q2,1T
3
n + q2,2T

2
n + q2,3Tn + q2,4,

• ∆H3(T ) = q3,1T
4
n + q3,2T

3
n + q3,3T

2
n + q3,4Tn + q3,5,

where

q1,1 = 0.254; q1,2 = 0.889; q1,3 = −2.579; q1,4 = −25.221;

q2,1 = 7.584; q2,2 = −13.255; q2,3 = 4.012; q2,4 = −66.226;

q3,1 = 149.46; q3,2 = −208.37; q3,3 = −77.08; q3,4 = 81.125; q3,5 = 45.736.

Model β first-order kinetics

The molar enthalpy changes are represented via the following polynomial functions

• ∆H1(T ) = s1,1T
3
n + s1,2T

2
n + s1,3Tn + s1,4,
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Model β second-order kinetics

T 60◦C 65◦C 70◦C 75◦C 80◦C 85◦C 90◦C 95◦C 100◦C

∆H1 −17.87 −17.82 −18.42 −18.59 −18.83 −18.79 −19.08 −19.23 −19.47

∆H2 −874.4 −998.3 −1145 −1285 −1447 −1600 −1789 −1957 −2135

∆H3 −7.14 −2.27 2.08 5.64 9.45 13.09 17.28 20.04 22.37

∆H4 45.40 3.94 −8.17 −13.01 −16.98 −21.08 −25.52 −28.59 −30.97

Table 5.11: Molar enthalpy changes variable with the temperature for Model β with second-order

kinetics.

• ∆H2(T ) = 0;

• ∆H3(T ) = s3,1T
4
n + s3,2T

3
n + s3,3T

2
n + s3,4Tn + s3,5,

• ∆H4(T ) = s4,1T
4
n + s4,2T

3
n + s4,3T

2
n + s4,4Tn + s4,5,

where

s1,1 = 0.515; s1,2 = −0.265; s1,3 = −10.924; s1,4 = −35.349;

s3,1 = 2.539; s3,2 = −2.655; s3,3 = −5.176; s3,4 = 22.210; s3,5 = −17.917;

s4,1 = −6.002; s4,2 = 4.323; s4,3 = 17.504; s4,4 = −35.926; s4,5 = −7.196.

Model β second-order kinetics

The molar enthalpy changes are represented via the following polynomial functions

• ∆H1(T ) = g1,1T
3
n + g1,2T

2
n + g1,3Tn + g1,4,

• ∆H2(T ) = g2,1T
3
n + g2,2T

2
n + g2,3Tn + g2,4,

• ∆H3(T ) = g3,1T
3
n + g3,2T

2
n + g3,3Tn + g3,4,

• ∆H4(T ) = g4,1T
4
n + g4,2T

3
n + g4,3T

2
n + g4,4Tn + g4,5,

where

g1,1 = −0.0378; g1,2 = 0.0585; g1,3 = −0.498; g1,4 = −18.730;

g2,1 = 4.7489; g2,2 = −28.150; g2,3 = −442.06; g2,4 = −1445.2;

g3,1 = −0.132; g3,2 = −0.906; g3,3 = 10.381; g3,4 = 9.7556;

g4,1 = 7.8329; g4,2 = −9.3896; g4,3 = −5.6314; g4,4 = −5.5769; g5,4 = −16.504.
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5.3.3 Model validation

Once all the parameters characterizing the identified models have been estimated, it is

possible to compare the performance of each model, both in terms of concentrations esti-

mates and of the heat released estimate.

To this aim, the complete and identified models are forced to track some temperature

profiles, using the PID controller described in Section 5.3, and the comparison between

the models have been performed via the root mean squared errors (see equations (2.53)

and (2.54)). In particular, 4 temperature profiles, similar to the ones adopted in industrial

context, have been tested. Figures 5.1-5.16 show the concentrations and heat estimates

for each identified model and each test profile; the root mean squared errors obtained

for each profile are reported in Table 5.12. In Table the symbols RMSEC , RMSEcQ and

RSMEvQ indicate the root mean squared errors for the concentrations, the heat released

computed considering the molar enthalpy changes as constants and the heat released

computed considering the molar enthalpy changes variable with the temperature, re-

spectively. The errors values are obtained considering 1000 samples for each profile.

From the analysis of the results some remarks can be done:

• The best identified model, both in terms of concentration estimation and heat esti-

mation accuracy is the Model β with second-order kinetics.

• The second-order models have good performance in terms of concentration estima-

tion accuracy.

• Despite its good performance in terms of concentration estimation, the Model αwith

second-order kinetics performs badly in terms of in heat estimation accuracy.

• The first-order models show comparable results: Model β achieves better accuracy

of the concentrations estimates, while Model α achieves better accuracy of the heat

estimate.

• Except the Model α with second-order kinetics, the models with molar enthalpy

changes variable with the temperature achieve better estimation of the heat re-

leased.
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Temperature profile no.1

Model RMSEC RMSEcQ RSMEvQ

α first-order kinetics 310.0 0.580 0.217

α second-order kinetics 98.39 0.710 1.404

β first-order kinetics 284.1 0.768 0.243

β second-order kinetics 82.80 0.678 0.035

Temperature profile no.2

Model RMSEC RMSEcQ RSMEvQ

α first-order kinetics 552.8 1.141 0.655

α second-order kinetics 163.4 2.136 2.527

β first-order kinetics 530.9 1.465 0.830

β second-order kinetics 163.8 0.806 0.245

Temperature profile no.3

Model RMSEC RMSEcQ RSMEvQ

α first-order kinetics 527.6 1.899 1.431

α second-order kinetics 172.2 2.569 3.115

β first-order kinetics 491.9 2.124 1.793

β second-order kinetics 160.7 1.556 1.167

Temperature profile no.4

Model RMSEC RMSEcQ RSMEvQ

α first-order kinetics 492.5 0.552 0.368

α second-order kinetics 113.8 1.301 2.543

β first-order kinetics 443.6 0.679 0.401

β second-order kinetics 109.0 0.374 0.106

Average RMSE

Model RMSEC RMSEcQ RSMEvQ

α first-order kinetics 470.7 1.043 0.668

α second-order kinetics 136.9 1.679 2.397

β first-order kinetics 437.6 1.259 0.817

β second-order kinetics 129.2 0.854 0.388

Table 5.12: RMSE on the test temperature profiles.
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Figure 5.1: Model α first-order kinetics: temperature profile no.1.
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Figure 5.2: Model α second-order kinetics: temperature profile no.1.
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Figure 5.3: Model β first-order kinetics: temperature profile no.1.
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Figure 5.4: Model β second-order kinetics: temperature profile no.1.
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Figure 5.5: Model α first-order kinetics: temperature profile no.2.
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Figure 5.6: Model α second-order kinetics: temperature profile no.2.
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Figure 5.7: Model β first-order kinetics: temperature profile no.2.
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Figure 5.8: Model β second-order kinetics: temperature profile no.2.
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Figure 5.9: Model α first-order kinetics: temperature profile no.3.
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Figure 5.10: Model α second-order kinetics: temperature profile no.3.
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Figure 5.11: Model β first-order kinetics: temperature profile no.3.
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Figure 5.12: Model β second-order kinetics: temperature profile no.3.



Chapter 5. Case studies 93

0 2 4 6 8 10 12
0

1000

2000

3000

4000

5000
Concentrations

[m
ol

 m
−

3 ]

Time [h]

 

 

E
1

M
E

7

0 2 4 6 8 10 12

300

320

340

360

Temperature profile

[K
]

Time [h]

0 2 4 6 8 10 12
0

5

10

15

20

Heat estimation with ∆H
i
 constant

[k
J 

m
−

3  s
−

1 ]

Time [h]

 

 

actual

estimated

0 2 4 6 8 10 12
0

5

10

15

20

Heat estimation with ∆H
i
 variable

[k
J 

m
−

3  s
−

1 ]

Time [h]

 

 

actual

estimated

Figure 5.13: Model α first-order kinetics: temperature profile no.4.
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Figure 5.14: Model α second-order kinetics: temperature profile no.4.
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Figure 5.15: Model β first-order kinetics: temperature profile no.4.
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Figure 5.16: Model β second-order kinetics: temperature profile no.4.
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5.4 Control

Two comparative case studies have been developed to test the effectiveness of the control

scheme proposed in Chapter 3 on a realistic simulation model.

In the first case study, the control schemes have been tested in ideal conditions, i.e., in

the absence of measure disturbances and actuator dynamics.

In the second case study, the same control schemes have been tested in the presence

of actuator dynamics and measurement disturbances, such as described in Section 5.2.

In each case study four different schemes have been tested:

• The model-free approach proposed in [41] and described in Section 3.3.2.2. Namely,

the two-loop scheme (3.30), (3.31) is adopted, in which q̂ and θ̂ are obtained by

means of observer (3.29). In order to cope with the singularities occurring when

(Tr−Tj)→ 0, this term has been replaced by the constant value 0.1 when |Tr−Tj | ≤
0.1.

• The model-free approach proposed in Section 3.3.2.1. Namely, the two-loop scheme

(3.30), (3.31) is adopted, in which q̂ is obtained by means of observer (3.20), using 15

Radial Basis Functions. The centroids are chosen evenly distributed in the interval

[293 K, 368 K], considered as the range of temperatures of the reaction. The width

π, equal for all the RBF functions, has been set as 102.

• The model-based controller-observer scheme (eqs. (3.9), (3.30) and (3.31)), without

updating the parameters estimate, i.e., the available nominal estimates are used.

The dynamics of the phenol-formaldehyde reaction has been estimated via the

Model α, with first-order kinetics and molar enthalpy changes depending upon the

temperature.

• The adaptive model-based controller-observer scheme (eqs. (3.9), (3.30) and (3.31)),

with update of the parameters estimates via (3.10) and (3.32). The dynamics of the

phenol-formaldehyde reaction has been estimated via the Model α, with first-order

kinetics and molar enthalpy changes depending upon the temperature.

In order to perform a fair comparison between the model-free and the model-based

approaches, the four schemes have been tuned so as to achieve the same control effort

(i.e., so as to obtain the same time histories of u, as far as possible). All the schemes have

been tuned via a trial-and-error procedure.
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The assumptions on the set-up, on the initial conditions and on the reactor geometry

have been assumes such as described in Section 5.2 and are reported in Table 5.1.

The desired temperature profile Tr,d(t), reported in Figure 5.17, develops in three

phases:

• Heating. In this phase the desired reactor temperature is raised from its initial

value, 293 [K], to 368 [K] in 6000 [s] via a third-order polynomial with null initial

and final derivatives.

• Isothermal phase. In this phase a constant set-point temperature (368 [K]) is com-

manded for 7500 [s].

• Cooling. In this phase the desired temperature is driven to 298 [K] in 4000 [s]; the

profile is a third-order polynomial with null initial and final derivatives. The final

temperature is then kept constant for 500 [s].
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Figure 5.17: Desired reactor temperature profile.

An initial estimation error on the concentrations, which amounts to the 5% of their

true values, has been assumed. Moreover, a wrong nominal estimate of θ has been con-

sidered, which is assumed to be equal to 1.6 times its true value (i.e., a 60% error).

The parameters of the controller-observer schemes are summarized in Table 5.13. It is

worth noticing that the parameters of the controller (gr, gj) are the same for all the control

schemes.

Results: Case Study 1

The results of the simulations are reported in Figures 5.18–5.21. It can be recognized

that all the tested control laws achieve satisfactory temperature tracking performance
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Parameter Value Parameter Value

l1 10 gr 5 · 10−1

l2 5 · 102 gj 5 · 10−1

l3 1 · 10−1 γ 6 · 10−1

lr 1 ω 3 · 10−2

lj 1 lq 2 · 10−2

λ 1.5 · 10−1 lθ 6.5 · 10−3

Table 5.13: Controller-observer parameters.

(Figure 5.18) and are characterized by very similar peak values of the control input (Fig-

ure 5.19). Noticeably, the model-based adaptive scheme achieves tracking performance

comparable with respect to the model-free schemes, also in the presence of wide model

uncertanties; as expected, the adaptive model-based approaches outperform the non-

adaptive model-based scheme, since the latter does not take into account the parametric

uncertainties at all.

It can be argued that the differences between the compared schemes are mainly due to

the different estimation accuracy of the heat released by the reaction (Figure 5.20) and of

the parameter θ (Figure 5.21). All the adaptive (model-based and model-free) approaches

achieve very good performance. Since the parameter estimate converge to the true value

of θ, it is possible to argue that the persistency of excitation condition is fulfilled.

Results: Case Study 2

The results in Figures 5.22–5.25 show that good performance are still achieved, even in

the presence of measurement noise and actuator dynamics, although all the variables

(especially the control input, as can be seen in Figure 5.23) are affected by noise and

oscillations. In particular the model-free observer based on RBFs is the most sensitive to

measurement noise. It can be concluded that the exponential stability property confers

to the adaptive model-based scheme a satisfactory degree of robustness.

The estimates of θ (Figure 5.25) are still fairly accurate. Also, the effect of the singu-

larity in the model-free observer is clearly visible in the last part of the batch, where Tr

and Tj tends to be equal at the steady-state. In this conditions the parameter estimate

diverges from the real value.
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Figure 5.18: Case study 1: reactor temperature tracking errors.
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Figure 5.19: Case study 1: commanded temperature of the fluid entering the jacket.
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Figure 5.20: Case study 1: estimates of the heat released by the reaction.
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Figure 5.21: Case study 1: estimates of θ.



Chapter 5. Case studies 100

0 5000 10000 15000

−0.2

−0.1

0

0.1

0.2

Model−free

Time [s]

[K
]

0 5000 10000 15000

−0.2

−0.1

0

0.1

0.2

Model−free (RBFs)

Time [s]

[K
]

0 5000 10000 15000

−0.2

−0.1

0

0.1

0.2

Model−based

Time [s]

[K
]

0 5000 10000 15000

−0.2

−0.1

0

0.1

0.2

Adaptive model−based

Time [s]

[K
]

Figure 5.22: Case study 2: reactor temperature tracking errors.
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Figure 5.23: Case study 2: commanded temperature of the fluid entering the jacket.
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Figure 5.24: Case study 2: estimates of the heat released by the reaction.

0 5000 10000 15000

10

15

20

25

30

35
Estimate of θ (model−based observer)

[k
J 

s−
1  K

−
1 ]

Time [s]

 

 

estimated

actual

0 5000 10000 15000

10

15

20

25

30

35
Estimate of θ (controller)

[k
J 

s−
1  K

−
1 ]

Time [s]

 

 

estimated

actual

0 5000 10000 15000

10

15

20

25

30

35
Estimate of θ (model−free observer)

[k
J 

s−
1  K

−
1 ]

Time [s]

 

 

estimated

actual

0 5000 10000 15000

10

15

20

25

30

35
Estimate of θ (model−free RBFs observer)

[k
J 

s−
1  K

−
1 ]

Time [s]

 

 

estimated

actual

Figure 5.25: Case study 2: estimates of θ.
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5.5 Fault diagnosis

The effectiveness of the proposed FDI scheme has been tested on the simulation model

of the reactor, with the adaptive controller (3.30), (3.31) with update of the parameters

estimates via (3.32). The estimation of the heat released and the residual generation can

be performed both by the model-based observer (3.9) and by the model-free observer

(3.20). In the following, for the sake of brevity, only the results obtained using the model-

based observer have been reported, since the same results have been obtained, using the

model-free observer.

The relevant parameters of the reactor and jacket models and of the controller-observer

scheme are the same used in the previous Section and are summarized in Tables 5.1 and

5.13.

In the simulations, the following classes of faults on the temperature sensors have

been considered:

• Abrupt switches to zero of the measured signal.

• Slow drifts, i.e., a linearly increasing signal is added to the measured data.

• Abrupt constant biases, i.e., a step disturbance is added to the measured data.

• Abrupt freezing of the measured signal, i.e., the measured signal is frozen at its cur-

rent value at a certain time instant.

• Increasing noise, i.e., a gaussian noise with increasing variance is added to the mea-

sured data.

As regards the actuator faults, two kind of faults have been considered:

• Abrupt constant biases, i.e., a value δu is added to the value of the input computed

via the control law (3.30).

• Abrupt freezing of the input, i.e., the input is frozen at its current value at a certain

time instant.

The normalization factors ρi, µi (i = 1, 2) have been chosen equal to 0.2 on the basis

of the values of the output estimation errors of the observers in healthy condition, that

are always below this threshold (see Figure 5.26).

The obtained results show that the proposed diagnostic scheme has been able to de-

tect and isolate all the simulated sensor faults. In detail, Figures 5.27-5.36 show the voted
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Figure 5.26: Output errors of the observers in healthy conditions.

measures, as well as the norm of both the detection and the isolation residuals, in the

presence of different sensor faults.

Figures 5.27 and 5.28 are referred to an abrupt constant bias with an amplitude of 10

[K], occurring at time t∗ = 10000 [s], on the sensor Sj,1.

Figures 5.29 and 5.30 show the voted measure and the residuals when the measure of

sensor Sr,2 switches to zero at time t∗ = 8000 [s].

Figures 5.31 and 5.32 are referred to a slow drift of about 0.01 [K·s−1], starting at time

t∗ = 1000 [s], on the sensor Sj,1.

Figures 5.33 and 5.34 show the results obtained for an increasing noise on the sensor

Sr,1. Namely a white noise with zero mean and increasing variance has been added to

the sensor output starting at time 12000 [s].

Figures 5.35 and 5.36 show the results obtained when the measured signal of sensor

Sj,1 has been frozen at its value at time t∗ = 3000 [s].

It can be easily recognized that all the faults have been correctly detected and iden-

tified. During a wide simulation campaign it results that when an abrupt freezing on

reactor temperature sensors (Sr,1 or Sr,2) occurs during the isothermal phase, the fault

can be detected but not isolate. Finally, the measure voted by the DMS results to be

always better than the standard duplex measure.
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As regards the actuators faults, Figures 5.37-5.40 show the faulted input, as well as

the norm of the residuals. It can be recognized that the detection of actuator faults has

been obtained.

In particular Figures 5.37 and 5.38 are referred on an abrupt constant bias of 20 [K] at

time t∗ = 10000 [s].

Figures 5.39 and 5.40 are obtained when input has been frozen at its value at time

t∗ = 14000 [s]. When this kind of fault occurs in the heating phase, it may cause a run-

away of the reactor, with potentially fatal consequences.
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Figure 5.27: Voting measure of Tj (abrupt bias at sensor Sj,1).
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Figure 5.28: Detection and isolation residuals (abrupt bias at sensor Sj,1).



Chapter 5. Case studies 106

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

50

100

150

200

250

300

350

400

Time [s]

T
r [

K
]

Voting T
r

 

 

Std Duplex
Voted Measure
Tr

1

Tr
2

Figure 5.29: Voting measure of Tr (abrupt switch to zero at sensor Sr,2).
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Figure 5.30: Detection and isolation residuals (abrupt switch to zero at sensor Sr,2).
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Figure 5.31: Voting measure of Tj (slow drift at sensor Sj,1).
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Figure 5.32: Detection and isolation residuals (slow drift at sensor Sj,1).
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Figure 5.33: Voting measure of Tr (increasing noise at sensor Sr,1).
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Figure 5.34: Detection and isolation residuals (increasing noise at sensor Sr,1).
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Figure 5.35: Voting measure of Tj (abrupt freezing of the measured signal on sensor Sj,1).
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Figure 5.36: Detection and isolation residuals (abrupt freezing of the measured signal on sensor

Sj,1).
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Figure 5.37: Actuator fault: faulted input (abrupt constant bias).
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Figure 5.38: Actuator fault: residuals (abrupt constant bias).
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Figure 5.39: Actuator fault: faulted input (abrupt freezing).
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Figure 5.40: Actuator fault: residuals (abrupt freezing).



Conclusions and future work

This thesis deals with some fundamental problems regarding batch reactors. Batch reac-

tors represent an engineering challenge because of their strong nonlinearities, the un-

steady operating conditions and the lack of complete state and parameters measure-

ments.

Theoretical aspects of modeling, control and fault diagnosis of batch reactors have

been tackled.

First, the full model of the reactor, involving a system of 15 differential equations, has

been developed. Then, well-known techniques for nonlinear implicit systems have been

applied to identify a number of reduced-order models, able to represent the heat released

by the reaction and the concentrations of the most relevant species. In simulation an

experimental procedure, for data generation and model validation, has been reproduced.

A novel model-based controller-observer scheme for temperature control has been

designed. The scheme is based on the adoption of a nonlinear model-based observer

and a nonlinear temperature controller. The observer is in charge of estimating the heat

released by the reaction. The controller is based on the closure of an inner loop on the

jacket temperature and an outer loop on the reactor temperature. The performance, in

terms of tracking accuracy and robustness to unmodeled dynamics, of the overall scheme

has been tested through a realistic simulation set-up and compared with the performance

of well-established techniques.

Finally, a fault detection and isolation technique, based on the physical redundancy of

the temperature sensors and a bank of two diagnostic observers, has been developed for

actuator and sensor faults. The performance in terms of detection and isolation capability

and of effectiveness of the voting procedure has been proven via computer simulations.

The major contributions of this thesis can be summarized as follows:

• The controller-observer scheme is developed for a fairly wide class of process, i.e.,

the class of irreversible non-chain reactions characterized by first-order kinetics.



• A rigorous analysis of the main properties of the overall scheme (i.e., convergence

and robustness) has been provided. In detail: convergence of state estimation and

tracking errors is always guaranteed under mild assumptions. Moreover, when the

(stronger) persistency excitation condition is fulfilled, exponential convergence of

all error signals is ensured. This, in turn, implies robustness of the proposed scheme

in the face of unmodeled effects.

• Since the design and the tuning of the controller can be achieved independently

from the adopted observer, the controller can be adopted in conjunction with other

observers and vice versa.

• The same observer adopted for control purpose, may be used also for achieve fault

detection and isolation.

Future work will be devoted to extension of the proposed approaches to more com-

plex reaction schemes, e.g., reactions characterized by second-order kinetics. Also, the

integration of the proposed model-based observer with an universal approximator for

the estimation of the model uncertainties is currently subject of investigation.

Concerning fault diagnosis, the proposed approach could be improved in the follow-

ing directions:

• implementation of a fault identification system;

• extension of the technique to more general process faults , such as abrupt variation

of the heat transfer coefficient due to foulness on reactor walls or side reaction due

to impurity in the raw material;

• development of fault-tolerant control strategies.
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