

ANNO ACCADEMICO: 2018/2019	
INSEGNAMENTO/MODULO: Chimica degli Alimenti	
TIPOLOGIA DI ATTIVITÀ FORMATIVA: Caratterizzante	
DOCENTE: Mauro De Nisco	
e-mail: mauro.denisco@libero.it	sito web:
	http://docenti.unibas.it/site/home/docente.html?m=009136
telefono: +390971205039	cell. di servizio (facoltativo):
Lingua di insegnamento: Italiano	
n. CFU: 6 (5 lezione + 1 n. ore: 56 (40 + 16)	Sede: Potenza Semestre: I (primo)
esercitazione)	Dipartimento/Scuola: Scuola di
	Scienze Agrarie. Forestali,
	Alimentari ed Ambientali (SAFE)
	CdS: Tecnologie Alimentari

OBIETTIVI FORMATIVI E RISULTATI DI APPRENDIMENTO

L'obiettivo del corso di Chimica degli Alimenti è fornire un'approfondita conoscenza chimica dei costituenti degli alimenti, le modificazioni che i prodotti alimentari subiscono e i principi di base della qualità alimentare dal punto di vista merceologico e salutista.

Conoscenza e capacità di comprensione

Lo studente deve dimostrare di possedere le conoscenze di base della chimica organica con particolare riferimento alle biomolecole per essere in grado di: a) comprendere le caratteristiche strutturali dei componenti organici degli alimenti; b) analizzare le trasformazioni degli alimenti nel *processing* industriale e domestico e nella conservazione; c) comprendere la funzione degli additivi alimentari; d) Conoscere i componenti degli alimenti responsabili per le caratteristiche organolettiche.

Conoscenza e capacità di comprensione applicate

Lo studente deve dimostrare di sapere applicare le conoscenze acquisite nella valutazione delle implicazioni a livello nutrizionale dei processi di trasformazione/alterazione degli alimenti; la presentazione degli argomenti è volta a favorire lo sviluppo della capacità di esaminare in autonomia: a) gli effetti delle variazioni strutturali dei principali componenti sulle proprietà macroscopiche delle matrici alimentari e b) l'efficacia e l'applicabilità nei diversi casi delle strategie comunemente adoperate per preservare gli alimenti.

Autonomia di giudizio

Lo studente deve essere in grado di a) proporre metodiche efficaci e compatibili con la sicurezza alimentare per preservare le componenti fondamentali degli alimenti; b) saper attingere informazioni dalla letteratura non scientifica o altri fonti; c) saper identificare eventuali additivi nella descrizione della composizione di prodotti industriali e comprenderne la funzione; c) approfondire e aggiornare le conoscenze di base fornite nel corso.

Abilità comunicative

Lo studente deve dimostrare a) di poter illustrare con chiarezza, esemplificandole in maniera appropriata, le caratteristiche di alimenti comuni in termini dei principali costituenti e dei componenti peculiari che ne determinano le caratteristiche organolettiche; b) di aver compreso e saper esporre gli scopi delle principali strategie utilizzate per preservare gli alimenti; c) di saper spiegare in modo semplice, ma corretto, le trasformazioni degli alimenti a seguito di comuni pratiche di cottura o lavorazione industriale.

Capacità di apprendimento

Lo studente deve a) sviluppare la capacità di comprensione in autonomia di un testo o un lavoro scientifico anche in

lingua inglese che affronti argomenti attinenti gli alimenti, loro composizione, trasformazione e conservazione; b) essere in grado di aggiornarsi o ampliare le proprie conoscenze attingendo anche dalla letteratura non scientifica o altri fonti e valutare le informazioni con senso critico; c) acquisire in maniera graduale la capacità di seguire seminari specialistici, conferenze, master ecc. nei settori riguardanti gli alimenti e la nutrizione; d) comprendere le esigenze delle aziende in termini di conoscenze, competenze ed abilità e dei possibili ambiti di applicazione.

PREREQUISITI

È necessario avere acquisito e assimilato le conoscenze fornite dai corsi di "Chimica Organica" e "Biochimica Generale".

CONTENUTI DEL CORSO

Introduzione (2h lezione frontale)

Alimenti e principi nutritivi. Definizioni di alimento. Scopi dell'alimentazione. Proprietà nutrizionali degli alimenti. Fabbisogno giornaliero. LARN (Livelli di Assunzione di Riferimento di Nutrienti). Definizione di nutraceutici e cibi funzionali.

Lipidi (6h lezione frontale + 4 Esercitazione)

Generalità e classificazione chimica. Acidi grassi saturi, mono e poliinsaturi; configurazione dei doppi legami; punti di fusione acidi grassi, composizione oli e grassi, acidi grassi essenziali; acidi linoleici coniugati. Reazioni degli acidi grassi insaturi: idrogenazione, ossidazione. La perossidazione lipidica: principali stadi, formazione idroperossidi, decomposizione di idroperossidi e formazione aldeidi; meccanismi di formazione dell'acroleina, tossicità e metabolismo; processi di polimerizzazione.

Carboidrati (9h lezione frontale + 6 Esercitazione)

Generalità e classificazione chimica. Reazioni degli zuccheri: ossidazioni, determinazione glucosio per via enzimatica; riduzioni. Glicosidi e legame glicosidico. Oligosaccaridi: saccarosio, zucchero invertito. Processi di imbrunimento non enzimatico: processi termici; reazione di Maillard; idrossimetilfurfurale; composti di Amadori; maltolo, isomaltolo; melanoidine; conseguenze nutrizionali. Polisaccaridi: classificazione; amido, composizione struttura e proprietà. Polisaccaridi non amilacei e fibra alimentare.

Proteine (8h lezione frontale + 6 Esercitazione)

Generalità e classificazione chimica. Composizione proteica degli alimenti più comuni; Processi di denaturazione; Amminoacidi essenziali e qualità delle proteine. Analisi delle proteine negli alimenti; analisi quali/quantitativa amminoacidi; metodo di Lowry, del biureto, di Kjedahl. Alimenti proteici; le caseina del latte: struttura delle micelle; le proteine del glutine; processi di lievitazione del pane.

Caratteri organolettici degli alimenti (4h lezione frontale)

Colore: Le clorofille come indicatori freschezza alimenti vegetali; instabilità termica: feofitine clorofillide. La mioglobina ed il colore delle carni: correlazione con i diversi stati della mioglobina; trasformazioni con la cottura; nitrosomioglobina nella conservazione delle carni. Carotenoidi: classificazione, esempi di uso come coloranti alimentari; stabilità termica e all'ossidazione. Le antocianine: nucleo base; dipendenza del cromoforo dal pH; il vino; uso come coloranti. Le betalaine: esempi: la betanidina; effetto del pH e termostabilità.Processi di imbrunimento enzimatico: attività delle fenolasi; esempi di substrati fenolici. Le catechine. Coloranti artificiali: classificazione. Coloranti naturali; esempi: la curcuma, l'acido carminio della cocciniglia. Sapore: Il gusto e l'odore. I principali gusti ed i siti di percezione. Il dolce: molecole dolci di origine naturale; zuccheri, \(\mathbb{T}\)-amminoacidi; molecole dolci artificiali: saccarina, ciclammato, acesulfame, aspartame. L'amaro: molecole amare di origine naturale: aloine, naringinina, caffeina. Requisiti strutturali per il sapore dolce. Il salato. L'acido. L'umami: requisiti strutturali gusto umami. Le sensazioni: l'astringenza: tannini del vino e polifenoli del tè; il piccante: la capsaicina; i glicosinolati.

Fattori di rischio per gli alimenti e metodi per la prevenzione (4h lezione frontale)

Conservanti: Cloruro di sodio, nitriti, anidride solforosa, benzoati ed altri acidi organici. Antibiotici da funghi. Metodi di irraggiamento. Micotossine classificazione.

Vitamine (3h lezione frontale)

Generalità e Classificazione. Funzione delle Vitamine nell'Organismo. Fonti Alimentari. Deficienza delle Vitamine: Segnali e Sintomi.

Acqua (2h)

Caratteristiche chimico-fisiche, l'acqua negli alimenti, attività dell'acqua. L'acqua destinata al consumo umano, le acque potabili e minerali.

Minerali (2h

Presenza nell'organismo, funzioni biologiche, fabbisogno e fonti alimentari di calcio, magnesio, potassio, sodio,

cloro, fosforo, zinco, ferro, iodio, fluoro, selenio, rame, molibdeno, zolfo, cobalto, manganese, nichel, vanadio, arsenico, cadmio, cromo, mercurio e piombo.

METODI DIDATTICI

Il corso prevede 56 ore di didattica tra lezioni ed esercitazioni. In particolare sono previste 40 ore di lezione frontale e 16 ore di esercitazioni calcolo in aula.

FINALITA' E MODALITA' PER LA VERIFICA DI APPRENDIMENTO

a) Risultati di apprendimento che si intende verificare: capacità dello studente di orientarsi con disinvoltura nell'ambito dell'intero programma dell'insegnamento, collegando i concetti appresi nel corso delle lezioni frontali per

la descrizione di a) struttura, proprietà e reattività in condizioni di rilevanza alla trasformazione degli alimenti delle principali classi di composti organici presenti negli alimenti; b) caratteristiche strutturali dei componenti minori degli alimenti responsabili delle proprietà organolettiche e correlazioni con le proprietà chimico fisiche; c) tipi e funzioni dei principali additivi degli alimenti.

b) Modalità di esame: prova scritta ed esame orale. L'esame scritto consiste in un test di 20 domande a risposta multipla e 2 a risposta aperta.

La valutazione finale sarà espressa con voto in trentesimi.

TESTI DI RIFERIMENTO E DI APPROFONDIMENTO, MATERIALE DIDATTICO ON-LINE

- o Patrizia Cappelli & Vanna Vannucchi "Chimica degli Alimenti" terza edizione Zanichelli
- o Paolo Cabras & Aldo Martelli "Chimica degli Alimenti" Piccin
- Tom P. Coultate "Chimica degli Alimenti" Zanichelli
- Appunti forniti dal docente fornito mediante condivisione in una cartella Dropbox con gli studenti presenti a lezione che forniscono il proprio indirizzo e-mail.

METODI E MODALITÀ DI GESTIONE DEI RAPPORTI CON GLI STUDENTI

All'inizio del corso, dopo aver descritto obiettivi, programma e metodi di verifica, il docente mette a disposizione degli studenti il materiale didattico. Contestualmente, si raccoglie l'elenco degli studenti che intendono iscriversi al corso, corredato di nome, cognome, matricola ed e-mail.

Gli studenti saranno ricevuti il lunedì dalle 16 alle 18 e il martedì dalle 10 alle 12 presso lo studio del Prof. Manfra per ogni delucidazione sul corso.

Oltre all'orario di ricevimento settimanale, il docente è disponibile in ogni momento per un contatto con gli studenti, attraverso la propria e-mail.

DATE DI ESAME PREVISTE¹

04/02/2019, 04/03/2019, 03/06/2019, 01/07/2019, 19/09/2019, 07/10/2019, 04/11/2019, 02/12/2019

COMMISSIONE D'ESAME

M. De Nisco (Presidente); Eugenio Parente; Annamaria Ricciardi e Antonio Scopa

SEMINARI DI ESPERTI ESTERNI SI □ NO ●

ALTRE INFORMAZIONI

¹ Potrebbero subire variazioni: consultare la pagina web del docente o del Dipartimento/Scuola per eventuali aggiornamenti