NETWORK ANALYSIS TOOLS IN
FOOD MICROBIAL ECOLOGY

Prof. Eugenio Parente
Dipartimento di Scienze
Universita degli Studi della Basilicata




In this presentation

What is network analysis?
definitions
what can | use it for?
node, edge and topological properties
(simple) tools for network visualization and analysis
suggested readings
Host-parasite networks
bacteriophages of lactic acid bacteria
structure of phage-bacteria interaction matrices
PBIM in S. thermophilus
OTU networks: analysis and visualisation of food microbial
communities
molecular tools for the analysis of food microbial communities
FoodMicrobionet
OTU — sample networks
Co-occurrence networks

Conclusions

Dynamic networks will not be considered here although they are a major topic in
network science



Konigsgberg bridges and Euler (17306)

Esiste un modo per raggiungere tutte le masse di terra (vertici o nodi) attraversando
ogni ponte (lato, margine, connessione) esattamente una volta? La risposta € no:
perché questo sia possibile ci dovrebbero essere al massimo 2 nodi (quello iniziale e
quello finale) con un numero dispari di connessioni; la formulazione di Eulero € “Un
qualsiasi grafo é percorribile se e solo se ha tutti i nodi di grado pari, o due di essi
sono di grado dispari; per percorrere un grafo "possibile" con due nodi di grado
dispari, é necessario partire da uno di essi, e si terminera sull’altro nodo dispari.”



Graph (and networks) terminology

A graph is an ordered
) ) r pair of a set of nodes
/ (or vertices) and edges
(or links)

' o G=(V,E)
W Edge V={A,B,C,D,E,F}
E={{A,B}.{A,D}{AE},

{B,E}L{C,E}{D,E},
Node ==~ j {D,F}}

In italiano Graph theory -> teoria dei grafi
Node, vertex ->nodo, vertice; Edge, link->archi (usato piu spesso per i grafi diretti),
lati, spigoli, cammini



Models of networks: the random network

N=50, E/N=0.05
LY PR .
o - defined by number of
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random network of same size, but with different average degree, made with Gephi



Bipartite and unipartite undirected graphs

A bipartite OTU-Food sample
undirected network

An unipartite, undirected microbial
co-occurrence network
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The world wide web as a directed graph

Boder et al., 2000 WDC Hyperlink graph 2012

Balanced size of IN and OUT: 21% IN much larger than OUT: 31% vs. 6%
- Size of LSCC: 27% - LSCC much larger: 51%
Tendrils
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http://www.slideshare.net/bizer/graph-structure-in-the-web-revisited-www2014-
web-science-track



Multigraphs

Here different edges, representing different methods for the evaluation of
cooccurrence/coexclusion, are shown for each node; the graph is bipartite; two other
special cases: a set of directed edges connecting two nodes in a multigraph is called a
quiver; self-loops (i.e. edges connecting a node with itself) may be admissible or not;
in some instances a disconnected graph (i.e. a graph with subnetworks which are not

connected among them) can be generated



Datasets

Wanna play? An extensive set of data is available at
https://github.com/gephi/gephi/wiki/Datasets

look at biological networks

Diseasome: a network of disorders and disease genes linked by
known disorder—gene associations, indicating the common genetic
origin of many diseases.

Elegans neural network: A directed, weighted network
representing the neural network of C. elegans

Yeast: Protein-Protein interaction network in yeast




Data formats: the adjacency matrix
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e'o 000100
o, Coordinates are 1-6.

Figure from Wikipedia
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Data formats: the adjacency matrix

.\\ ] L..J.'I -

Directed Cayley graph of Sy

2880099208803 80508500089

s
e el LE T
LT
— ) . BHEHEE LS

Coordinates are 0-23.

As the graph is directed, the matrix is not symmetric.

Figure from Wikipedia
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Adjacency matrix for a bipartite graph
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Host

CHCC3063
CHCC2070

CHCC2130

CHCC2133

CHCC2134

CHCC2389

CHCC3048

CHCC3049

CHCC3050

CHCC3046

CHCC4323

CHCC4325

CHCC4327

CHCC4460
CHCC4895

CHCCE592
SMQ-301

Wide format
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An abundance table: wide format

Taxon Jcaa st ars a2 ass awns s
Root;Other;Other;Other,Other;Other 000023898 0 000021062 [ 0 0.00095946 0
Rootk_Bacteria__Actinobacteriaic_ _Mi - ) ) [ ) 0 0
Rootk_Bacteria__ Actinobacteriaic Micr R s, [ [ [ [) [) [ 0

Root;k_Bacteria_| o | :Other; [ ) ) 0 ) o

Root;k_Bacteria_| _ il . Oth ) [ 0 000035323 ) 0 00002173
. - i _c _ 0 000043328 3 [ ) [ 0
| ¥ _ __Chryseobacteriumbovis [ 0 [ [ ) 0 0
| - _ _ 0 000043328 0 0 000015552 0 0
Haloanella;s, 0 000086655 0 [ 0
- o i ;_Myroides;s_ ) 0 0 0 000015552 ) 0
Root;k_Bacteria__Firmicutes;Other;Other,Other;Other ) ) [ 0 0
Root;k_Bacteria__Firmicutes;c__Bacilli,Other;Other;Other 000095591 [ [ 0 0.00062208 0.00011993 0
Rootk_Bacteria_Firmicutes;c__Bacilif_Aerococcaceae:g_s_ ) 0 0 ) 0 0
Rootk_Bacteria__Firmicutes;c__Bacillif_Carnobacteriaceae;g_Carnobacterium;s__ 0.0031067 0.00129983 0.00021062 0 0 0.00059966 0
Rootk_Bacteria__Firmicutes:c__Bacillif_Enterococcaceae:g_Enterococcus;Other [ [ 0 0000015552  0.00011993 0

Root;k_Bacteria_Firmicutes:c_Bacillf_| i o o
Rootk_Bacteria__Firmicutes;c_ Bacilli;f_L Lactobacill 000011949 059662045 0.8258214 0.34528435 0.86500778 0.68073879 0.85180356
Rootk_Bacteria__Firmicutes;c__Bacilli;f_Leuconostocaceae;g__Leuconostoc; 000011949 ) 0 00010597 0
Root;k_Bacteria_Firmicutesic__Bacillif_Listeriaceae;g_Brochothrixs__ 0 000043328 0.00021062 0 0.00015552 [ 0
Root;k_Bacteria_Firmicutesic_| . | | 0 [ 0 0 ) 0 0
Root;k_Bacteria f__Staphylococcaceae;g__Staphylococcus;Other [ [ 0 0 ) 0 0
Root;k_Bacteri _Streptococcaceae;Other;Other 000035847 0 000063185 0,0010597 0.00077761 0.00059966 0.00043459
Rootk_Bacteria__Firmicutes;c__Bacillif_Streptococcaceaeig__Lactococcus;Other 001278528 000259965 0.0168492 0.01660191 0.00559876 0.00047973 0.00282486
Rootk_Bacteria__Firmicutes;c__Bacillif_Streptococcaceae;g_Lactococcusis 005281396 000086655 0.01032014 0.00088308 0.00404355 0.00143919 0.00369405
Root;k_Bacteria__Firmicutes;c__Bacill _Lactococcus;s_ 00063329 0.00043328 0.00042123 0.00017662 0.00062208 0.00179899 0

Root;k_Bacteria__Firmicutesic__Bacilli;f_ | 000382364 000346621 0.01474305 0.00900742 0.01041991 000287839 0.00391134
Root;k_Bacteria_Firmicutes;c_Bacil L 000143386 0 000400169 0.00229601 0.00139969 0.00011993 0.00065189
Root;k_Bacteria__Firmicutes;c__Bacillif_Streptococcaceae:g_Streptococeus;Other ) 0 000042123 0.00141293 0 00003598 0
Root;k_Bacteria__Firmicutes;c__Bacilli;f_ = = 000561596 000129983 0.00379107 0.0044154 0.00155521 0.0010794 0.00130378
Root;k_ _Firmicutesic_ L - 0 0
Root;k_Bacteria_Firmicutes;c_Bacil 000071693 0 0 0 0.00015552  0.00059966

[
Root;k__Bacteria__Firmicutes;c__Baci 09057235 033838822 011120472 061691982 0.10326594 029779324 0.13276836

This is a dense table, with a lot of 0; the meaning of 0 values in unclear: they might
mean absence or presence below the detection limit; this again would depend on the
filtering options; were singleton and doubletons discarded? etc. If you want to run a
correlation analysis rows with many 0 would inflate the correlation; different library
sizes may seriously affect
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An edge table (long format

ﬂ B [ € [ o [ €& [ F [ G [ W [ 1 [ J
.0 fSource  lTarget Type Id Label Weight Gtargetl  Gtarget2  Bioproject Note
2 AMA Root;k__;c__ Undirected 1 0.84033614 165 DNA  V1-V3 SRP052240 -
3 AA Root;k__Bac Undirected 2 0.05252101 165_DNA  V1-V3 SRP052240 -
4 AMA Root;k__Bac Undirected 3 0.15756303 165_DNA  V1-V3 SRP052240 -
5 AA Root;k__Bac Undirected 4 0.05252101 165_DNA  V1-V3 SRP052240 -
6 AA Root;k__Bac Undirected 5 0.6565126 165 DNA  V1-V3 SRP052240 -
7 |AA Root;k__Bac Undirected 6 0.0262605 165_DNA  V1-V3 SRP052240 -
8 AA Root;k__Bac Undirected 7 11554621 165 DNA  V1-V3 SRP052240 -
9 AA Root;k__Bac Undirected 8 0.18382353 165 DNA  V1-V3 SRP052240 -
10 A1A Root;k__Bac Undirected 9 13392857 165_DNA  V1-V3 SRP052240 -
11 A1A Root;k__Bac Undirected 10 0.0262605 165_DNA  V1-V3 SRP052240 -
12 AmA Root;k__Bac Undirected 1 3.335084 165 DNA  Vi-v3 SRP052240 -
13 A1A Root;k__Bac Undirected 12 0.05252101 165_DNA  V1-V3 SRP052240 -
14 AMA Root;k__Bac Undirected 13 0.07878152 165 _DNA  Vi-V3 SRP052240 -
15 A1A Root;k__Bac Undirected 14 0.0262605 165_DNA  V1-V3 SRP052240 -
16 A1A Root;k__Bac Undirected 15 85.05777 165 DNA  V1-V3 SRP052240 --
17 |A1A Root;k__Bac Undirected 16 0.0262605 165 DNA ~ V1-V3 SRP052240 -
18 A1A Root;k__Bac Undirected 17 0.13130252 165_DNA  V1-V3 SRP052240 -
19 A1A Root;k__Bac Undirected 18 0.0262605 165 DNA  V1-V3 SRP052240 -
20 A1A Root;k__Bac Undirected 15 0.5514706 165 DNA  V1-V3 SRP052240 -
21 A1A Root;k__Bac Undirected 20 0.05252101 165_DNA  V1-V3 SRP052240 -
22 MA Root;k__Bac Undirected 21 0.10504202 165 DNA  Vi-V3 SRP052240 -
23 A1A Root;k__Bac Undirected 22 0.0262605 165 DNA  V1-V3 SRP052240 -
24 A1A Root;k__Bac Undirected 23 3.7289915 165 DNA  V1-V3 SRP052240 -
25 A1A Root;k__Bac Undirected 24 0.0262605 165 DNA  V1-V3 SRP052240 -
26 A1A Root;k__Bac Undirected 25 1.8644958 165 DNA  V1-V3 SRP052240 -
27 MA Root;k__Bac Undirected 26 0.15756303 165_DNA  V1-V3 SRP052240 -
28 A1A Root;k__Bac Undirected 27 0.26260504 165_DNA  V1-V3 SRP052240 -
29 A1B Root;k__c__ Undirected 28 0.67805123 165_DNA  V1-V3 SRP052240 -
30 A1B Root;k__Bac Undirected 30 0.05022602 165_DNA  V1-V3 SRP052240 -
31 A8 Root;k__Bac Undirected 31 0.12556504 165_DNA  V1-V3 SRP052240 -
32 mB Root;k__Bac Undirected 32 0.15067805 165_DNA  V1-V3 SRP052240 -
33 A8 Root;k__Bac Undirected 33 0.75339025 165_DNA  V1-V3 SRP052240 -
34 A8 Root;k__Bac Undirected 34 0.92918134 165_DNA  V1-V3 SRP052240 -
35 |A1B Root:k  Bac Undirected 35 0.9040683 165 DNA  V1-V3 SRP052240 -




6 degree of separation: Barak Obama
followers?

mappa degli account di twitter seguiti da @OIIOxford Oxford Internet Institute
University of Network http://oxfordinternetinstitute.github.io/InteractiveVis/

network/; in general in social network analysis
nodes are called actors and edges ties
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Bibliographic networks

1: Hydrocarbon Seeps

2: Genetic Analyses

3: Fish Habitats and Distributions
4: Undersea Volcanoes

5: Continental Spreading Centers
6: Arctic Ocean Ecosystems

7: Corals and Coral Reefs

8: Bioluminescence and Vision

9: Cetacean Distributions

10: Great Lakes Sinkholes

I

)
[rd

http://www.lib.noaa.gov/bibliometrics/ This is a bibliographig coupling network; two
papers are connected if both cite the same paper

16



Co-author networks (applied microbiology in
Universities of Southern Italy)

A

Again an undirected network; here links are paper coauthored by two authors (the
nodes) and the strength/weigth is the number of papers; size of nodes proportional
to number of papers



Biological networks

Metabolic networks

Protein-protein interaction networks
DNA-protein interaction networks
Neural networks

Ecological networks
food webs
co-occurrence/co-exclusion networks
pollinator networks

18



Aschematic representation of metabolic
networks (1

ik _
"
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A K

(a) (b)

a. bipartite representation: circles are metabolites, squares are reactions; b. tripartite
representations, enzymes are triangles
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A schematic
representation
of metabolic
networks (2)

here usually the reactions/enzymes are on the edges, but this may cause some loss of

information
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Netw

nalysis tools for food

icrobial ecology

The citrate metabolism network for L.
casei ATCC334 from KEGG

CITRATE CYCLE (TCACYCLE)
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A food web: the core sound food web

e

Southern flounder

Se!rgls

=AvEF

Meiofauna

> - e

=

. °
Phytoplankton Benthic Bacteria

http://core.ecu.edu/BlOL/luczkovichj/core_sound/core_sound.html. Conventionally

direction of arrows is with energy flow
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Co-occurrence relationships in the human
microbiome

Edge color code

v oS R
.:".
=Y

figura supplementare presa da Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N.,
Gevers, D., Raes, J., & Huttenhower, C. (2012). Microbial Co-occurrence Relationships
in the Human Microbiome. PLoS Computational Biology, 8(7), €1002606. doi:
10.1371/journal.pcbi.1002606

Figure S1 Significant co-occurrence and co-exclusion relationships among the
abundances of clades in the human microbiome. The network displays all significant
phylotype associations within and across the 18 body sites sampled by the HMP.
Nodes represent phylotypes (colored according to the body site in which they occur)
whereas edges represent significant relationships between phylotypes. Edge
thickness reflects the strength of the relationship, and edge color its directionality
(green co-occurrence, red co-exclusion).
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Beyond pretty graphs: what can Network

analysis do for me

- make the exploration of the data (much) easier

- compute network and node stats
- explore networks (small world? scale free?)
- compare different networks

- identify nodes with special properties (large degree or weighted
degree, centrality measures)

- explore relationships between nodes
- find communities / partition the network
- extract sub-networks by filtering

- explore dynamic behaviours
- how does the network change in time?

24



Node properties

qualitative metadata and features

degree: the number of edges of a node (in-degree and out-
degree are computed separately for directed networks)
weighted degree: the sum of the weights of the edges of a
node
clustering coefficient: a measure of the degree to which
nodes in a graph tend to cluster together
centrality measures: measures of the “importance” of a node
in a network

degree centrality

closeness centrality

betweeness centrality

eigenvector centrality

hub a node with a lot of connections, assortative if tends to connect with other hubs,
disassortative if not; authority: a node with a lot of incoming connections

25



Edge properties

qualitative metadata and features
source and target nodes

weight

type (directed vs undirected)

26



Centrality measures (undirected

A. Degree centrality: the number of
links incident upon a node

B. Closeness centrality: a measure of
how long it will take to spread
information from s to all other nodes
sequentially (using shortest paths)

C. Betweenness centrality: the number
of shortest paths which pass through
the given vertex

D. Eigenvector centrality: a measure of
the influence of a node in a network
(used in Google search!)

E.  Katz centrality: measures the number
of all nodes that can be connected
through a path, while the contributions
of distant nodes are penalized

F.  Alpha centrality: related to
eigenvector centrality

da Wikipedia centrality refers to indicators which identify the most important
vertices within a graph; degree centrality and disease: a node with a high index has a
high probablity of catching a disease flowing through the network;

27



Network properties

size: the number of nodes (N) of a graph
number of components

connectivity (or connectance): the ratio between the number of
edges and the the possible number of edges, i.e. the number of edg
average (weighted) degree: 2E/N (for weighted degree 2(2Zw,E;)/N
es that would make the network a complete network, N(N-1)/2
average path length: the average length of shortest paths between
all nodes

clustering coefficient: the average of the clustering coefficients of all
nodes

modularity: a measure of the strength of division of a network in
modules/clusters (range -0.5 to 1, the higher the more modular)

fit and exponent of the power law (or other distributions): in many
cases large networks are scale-free and a log-log plot of number of
nodes vs. their degree is linear P(k)~k

Scale free networks contain hubs (i.e. nodes which have a degree largely exceeding
the average) and are relatively robust to failure (i.e. several edges and nodes must be
destroyed before the network becomes disconnected or fragmented; the network is
resistant to the destruction of one hub but if several fail at the same time...). Nodes
with a low degre usually have a high clustering coefficient, and clustering coefficient
distribution also follows power law. the exponent gamma is usually in the range 2-3.
This is also commected to the small world phenomenon: i.e. small communities of
people which are highly connected but in which one member is connected to a hub.
High degrees of clustering and hierarchic structures are also associated with power
law distributions od the clustering coefficient of nodes

28



Node degree distribution

random networks real networks (power-law, scale-iree)

most nodes are
average linked

number of nodes
number of nodes

owly linked <- node degree —» highly linked lowly linked «- node degree —> highly linked

In random networks the node degree distribution follows Poisson law

29



aumter of mummoaas sy tew

mmber of wdos

mmberof web wies

i R R R B B R R

mnter o ame

mmber of A mxtom

Properties for
“famous”
networks

http://www.santafe.edu/media/workingpapers/02-02-005.pdf Note that the fit is not
always perfect. There are several reasons for this and models of combined

distributions
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Properties for “famous” networks

clustering coefficient '
network n z | measured random graph
Internet (autonomous systems)? 6374 3.8 10.24 0.00060
World-Wide Web (sites)® 153127 352 | 0.11 0.00023
power grid® 4941 2.7 | 0.080 0.00054
biology collaborations® 1520251 15.5 | 0.081 0.000010
mathematics collaborations® 253339 3.9 | 0.15 0.000015
film actor collaborations® 449913 1134 | 0.20 0.00025
company directors’ 7673 14.4 | 0.59 0.0019
word co-occurrence® 460902 70.1 | 0.44 0.00015
neural network® 282 14.0 | 0.28 0.049
metabolic network® 315 28.3 | 0.59 0.090
food web! 134 8.7 | 0.22 0.065

http://www.santafe.edu/media/workingpapers/02-02-005.pdf
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Fig. 1. Log-log plot of the clustering coefficient ratios (empirical/random
web values) as a function of size of the network. Open circles represent data
from 16 trophic food webs from the current analysis. Dark circles represent
data from previous studies of 18 scale-free small-world networks summarized
in ref. 19: 2 taxonomic food webs (22); E. coli substrate and reaction graphs
(40); C. elegans neural network, movie actors, and power grid (17); 4 science
coauthorship data sets (41, 42); 2 math and science coathorship data sets (43);
low and high estimates for Internet domains (44, 45); world wide web sites
(46); and concurrence and synonomy of words (47, 44).

Comparing network
properties: clustering
coefficients for food
webs versus scale-
free, small world
networks

Food-web structure and network theory:
The role of connectance and size

fer A. Dunne*", Richard J. Williams*, and Neo D. Martinez*

The authors conclude that food webs do not necessarily display the characteristics of
other small world scale free networks, and that show smaller size and higher
complexity, in terms of connectivity, and that degree distributions are typically
related to size and connectance. Food webs with relatively high connectance typically

display uniform distributions, webs with middle connectance tend to have

exponential distributions, and webs with very low connectance display power—law or

partial power—law distributions.
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Suggested readings

The'New Science

af Ngtworks

Albert-Laszlé Barabasi

Networks

An Introduction
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(More) Suggested readings

Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Food-
web structure and network theory: The role of connectance and
size. Proceedings of the National Academy of Sciences of the
United States of America, 99(20), 12917-12922. doi:10.1073/
pnas.192407699

- Deng, Y., Jiang, Y.-H., Yang, Y., He, Z,, Luo, F., & Zhou, J.
(2012). Molecular ecological network analyses. BMC
Bioinformatics, 13(1), 113. doi:10.1186/1471-2105-13-113
Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N.,
Gevers, D., Raes, J., & Huttenhower, C. (2012). Microbial Co-
occurrence Relationships in the Human Microbiome. PLoS
Computational Biology, 8(7), e1002606. doi:10.1371/
journal.pcbi.1002606

- Flores, C. O., Meyer, J. R., Valverde, S., Farr, L., & Weitz, J. S.
(2011). Statistical structure of host-phage interactions.
Proceedings of the National Academy of Sciences, 108(28),
E288-97. doi:10.1073/pnas.1101595108
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nalysis tools for food mici

Network visualization and analysis tools 1:
Gephi
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A few words on the Gephi project, its development etc.



Network analysis tools for food microbial ecology

Network visualization and analysis tools 2:

Cytoscape

TN svie | Seiect)
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What can | do with them?

import/export networks in a variety of formats

visually explore networks

calculate node and network statistics

annotate networks by applying styles

apply layouts to facilitate visualization/interpretation
filter the networks to select and operate on subnetworks
and much more (using plugins/apps)

Fare qualche esempio dopo
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Other tools

CoNet: a Cytoscape app for the generation and analysis
of co-occurrence/co-exclusion networks
http://psbweb05.psb.ugent.be/conet/index.php

MENA: an online tool for the analysis of molecular
ecological networks http://129.15.40.240/mena/

BiMat: a Matlab package for the analysis of bipartite
networks http://arxiv.org/abs/1406.6732

and many others... (including R libraries such as igraph
and bipartite)
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Two examples of network analysis in food

microbial ecology

- Phage-Bacteria interaction networks: how to use
interaction matrices (weighted or unweighted) to improve
visual representation and extract information for
comparison among studies

- OTU-sample and OTU-OTU networks: use of data on
the composition of food microbial communities generated
by amplicon (16S DNA/RNA) targeted High Throughput
Sequencing (HTS) to detect core microbial communities,
cluster samples and detect significant microbe-microbe
interactions (the FoodMicrobionet initiative)
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PHAGE — HOST
INTERACTIONS
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Network analysis tools for food microbial ecology 41

Bacteriophages of lactic acid bacteria

- all belong to the order
Caudovirales (families
Myoviridae, Siphoviridae
and Podoviridae)

- ds DNA genome, 30-45
kb, many have been
sequenced

- can be both lytic and
temperate

- are the main cause of
fermentation failure in
the cheese industry




Network analysis tools for food microbial ecology 42

Phage-host relationships

- Phage sensitivity is evaluated
by a variety of methods
providing quantitative (plaque
counts,activity tests, etc.) or
qualitative results (spot test,
activity tests, etc.)

- the host spectrum of
bacteriophages may be narrow
(typical in S. thermophilus) or
wide (some Lactoc. lactis
phages) and depends on a
variety of factors

- knowledge of phage host

relationships is essential for
starter cultures management
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Potential structures of Phage Bacteria

Interaction Matrices
Ass B s
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Flores, C. O., Meyer, J. R.,
Valverde, S., Farr, L., & Weitz,
J. S. (2011). Statistical
structure of host-phage
interactions. Proceedings of
Phages Phages the National Academy of
Sciences, 108(28), E288-97.
doi:10.1073/pnas.1101595108
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Nestedness and modularity vs. random
expectations

Nestedness in host-phage networks A Modularity in host-phage networks
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Many S. thermophilus matrices are more modular than random expectations, this is
probably due to the CRISPR-CAS system



Phage

Unsorted PBIM (Zinno et al., 2010)
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Parameters from unsorted PBIMs

H number of hosts;

P number of phages;

S number of species (H+P);

M size (HxP);

| number of interactions;

C connectance (I/M);

LH mean number of interactions, host (I/H);
LP mean number of interactions, phage (I/P)

Many S. thermophilus matrices are more modular than random expectations, this is
probably due to the CRISPR-CAS system
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CHOCARS
cHOCZE®
cHoCAs
CHOCDB
cHOCOB
CHOCTR
CHOCHD
CHoCOm
cHoc210
cHoc21m

EYeE)
CHOCHES
cHOCZm

cHoC2134
cHoCaR?

[ TAAEIEL

a modular PBIM, Zinno et al., 2010

Sorting PBIMs by matrix clustering

a PBIM with low modularity,

Guidone et al. 2015

[

il

LB15p

LA7g
LB14p
LA17p

LA3g

LB16p

LB7g

Differences in isolation strategy may contribute
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Network visualisations
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Network visualisations

LB@5p
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A PCA analysis from network properties

. Factor 2 (35.4%)

- 0 1
Factor 1 (55.0%)

an analysis was carried
out on all published
studies on S.
thermophilus
bacteriophages with
PBIMs

both parameters from
the unsorted PBIMS and
network parameters
were used

the analysis clearly
separate different
studies and, sometimes,
subsets within studies
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Network analysis tools for food microbial ecology

OTU - NETWORKS
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Evolution of the microbiological approaches used
to study microbial diversity in food ecosystems

W DAIRY

W DOUGHS

B FERMENTED_BEVERAGES

B FOOD_ENVIRONMENT
MEAT
MISCELLANEOUS

W SEAFOOD

W VEGETABLES

Technology advancement

Heterogeneity/biases

« different extraction methods

« different targets (16S RNA or RNA
gene, variable region)

« different platforms

« different bioinformatics pipelines

e Avaiable o at www sciencadiectcom
:r’-g ScienceDirect

ASViER
ing into food- i i ial consortia:

a ‘cultural’ evolution

Luca Cocolin' and Danilo Ercolini* W

Number of papers rising steadily, more than 100 at the time of writing this
presentation. evolution of methods in food microbial ecology, from counts+isolation
to cultivation independent methods (DGGE, tRFLP, clone libraries) to amplicon
targeted NGS to metagenomics. Number of studies published on amplicon targeted
metagenomics 87+, 44+ in last two years
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Evaluating the structure and function of

microbial communities in foods
- The (more or less recent)

p

ast

cultivation dependent
methods (count, isolate,
identify/type): bias from non-
culturability and or lack of
selectivity, low throughput,
low sensitivity (only species
present at >1-5% detected)

- cultivation independent

methods: T/DGGE, ARISA, t-
RFLP, analysis of clone
libraries, microarrays, etc.:
method dependent biases,
often semiquantitative nature,
sometimes lack of
identification at the species
level

- the present and (near)
future
- amplicon targeted HTS:

targets the 16S RNA gene
active + inactive) or RNA
active only), high throughput
generally 2000-5000
sequences/sample needed for
good coverage), several
potential biases, resolution at
the genus/species level

- shotgun sequencing of

RNA libraries: high
throughput, identifies both
genera/species and pathways
active at different stages of
evolution of a community
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Advantages and disadvantages of HTS

tools

R -
L ) ics: Moving Forward in
High Throughput s“"":,:.".," Microbial Ecology

Disadvantages

Need for bicinformatics skills

Overall cost ang scalability to
the food industry

Advantages

High-throughput -

Screening of many food
samples at the same time

cation of the
majority of microbes in raw
materials and during food
productvon/slorage

Safer bench work compared to
other molecylar approaches

Possible insights on both
taxonomy and activities in the
case of ‘microbiome’ studies

i icrobial ecology.
and disadvantages of the use of HTS to study food-associated mi
FIG 2 Advantages
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NGS and third generation sequencing

platforms

Next generation sequencing

lon Torrent: semiconductor sequencing; 200 bp; 0.02-10 Gb
throughput; 1x107-7x108 reads/run, 4.5 h

lllumina: reversible terminator sequencing. 100-500 bp (increasing);

6-600 Gb throughput; 1x107-3x10° reads/run, 20 h to several days

454: pyrosequencing. 400-700 bp; 35-700 Mb throughput,
1x10%-1x10° reads/run, 99-99.99% accuracy; 10-23 h

SOLiD: sequencing by ligation, 75 bp; 90-180 Gb throughput,
1.5-6x108 reads/run, 99.99% accuracy; 7-12 d
Third generation sequencing

PacBio RS II: Single Molecule, Real-Time (SMRT®) DNA
Sequencing. 14-40 gbp; 1 Gb throughput, 70,000 reads/run,
99.999% accuracy (genomes); 30 min

Helicos, Oxford Nanopore

this and the following slides from http://users.ugent.be/~avierstr/nextgen/
Next_generation_sequencing_web.pdf; visit also http://
www.molecularecologist.com/next-gen-fieldguide-2014/
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Network analysis tools for food microbial ecology 56

Flow chart for pyrosequencing

Food sample design of the experiment

Extraction and purification of DNA vs RNA, potential biases
nucleic acids

Library preparation

DNA vs cDNA, potential biases
Emulsion PCR amplicon vs shotgun

potential biases,
homopolymer stretches,
quality, multiplexing, number
of reads

Pyrosequencing

Bioinformatic analysis

different level of choices for
quality control, filtering,
matching/grouping,

Data tables identification

only some of this steps may be performed in your lab; generally sent out to services
(darker boxes); issues with extraction from different matrices, extracellular DNA,
contamination with mitochondrial/chloroplast, active vs inactive, bacteria resistant to
lysis



The output: diversity

alpha diversity: the species (OTUs) composition in a
subunit (at different taxonomic levels), with diversity
indices (commonly used indices: number of species,
Simpson, Shannon, Chao1) and measurements of
coverage

beta diversity: measures of compositional dissimilarity
among samples (two common measures are Bray-Curtis,
which treats taxa as unrelated and Weighted Unifrac,
which is based on phylogenetic distance among taxa and
their abundance); these are used as an input for
ordination methods (clustering, PCoA = MDS, etc.) or for
inferential methods often together with metadata on
samples
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Atypical abundance OTU table: the
meaning and impact of 0 values

Taxon Jcaa st ars a2 ass awns s
Root;Other;Other;Other,Other;Other 000023898 0 000021062 [ 0 0.00095946 0
Rootk_Bacteria__Actinobacteriaic_ _Mi - ) ) [ ) 0 0
Rootk_Bacteria__ Actinobacteriaic Micr R s, [ [ [ [) [) [ 0
Root;k_Bacteria_| o :f_ A [ ) ) 0 ) ) 0
Root;k_Bacteria_| _ . Oth ) [ 0 000035323 ) 0 00002173
Root;k_Bacteria_| | _ _ 0 000043328 3 [ ) [ )
Root;k_Bacteria_| | _ _ _a [ 0 [ [ ) 0 0
Root;k_Bacteria_| - _ _ 0 000043328 0 0 000015552 0 0
Rootk_Bacteria Haloanella;s, 0 000086655 0 [ 0
Root;k_Bacteria_| o f_ 8 Myroidesis__ ) 0 0 0 000015552 ) 0
Root;k_Bacteria_Firmicutes;Other;Other,Other;Other ) ) [ 0 0
Root;k_Bacteria__Firmicutes;c__Bacilli,Other;Other;Other 000095591 ) [ 0 0.00062208 0.00011993 0
Rootk_Bacteria_Firmicutes;c__Bacilif_Aerococcaceae:g_s_ ) 0 0 ) 0 0
Rootk_Bacteria__Firmicutes;c__Bacillif_Carnobacteriaceae;g_Carnobacterium;s__ 0.0031067 0.00129983 0.00021062 0 0 0.00059966 0
Rootk_Bacteria__Firmicutes:c__Bacillif_Enterococcaceae:g_Enterococcus;Other 0000015552  0.00011993 0
Root;k_Bacteria_Firmicutes:c_Bacillf_| , o o
Rootk_Bacteria__Firmicutes;c_ Bacilli;f_L Lactobacill 000011949 059662045 0.8258214 0.34528435 0.86500778 0.68073879 0.85180356
Rootk_Bacteria__Firmicutes;c__Bacilli;f_Leuconostocaceae;g__Leuconostoc; 000011949 0010597 0
Root;k_Bacteria_Firmicutesic__Bacillif_Listeriaceae;g_Brochothrixs__ 0 000043328 0.00021062 0 0.00015552 [ 0
Root;k_Bacteria_Firmicutes;c_Bacilif_t | | 0 0 0 0
Rootk_Bacteria__Firmicutes;c_Bacillif_Staphylococcaceae;g__Staphylococcus;Other [ [ 0 0 0
Root;k_Bacteria_Firmicutes;c_Bacillif__Streptococcaceae;Other;Other 000035847 000063185 0.0010597 0.00077761 0.00059966 0.00043459
Root;k_Bacteria__Firmicutes;c__Bacillif _Streptococcaceae;g__Lactococeus;Other 001278528 000259965 0.0168492 0.01660191 0.00559876 0.00047973 0.00282486
Root;k_Bacteria_Firmicutes;c_Bacillif__Streptococcaceae;g__Lactococcus;s_ 005281396 000086655 0.01032014 0.00088308 0.00404355 0.00143919 0.00369405
Rootk_Bacteria__Firmicutesc_| _Lactococcus;s_ 00063329 0.00043328 0.00042123 0.00017662 0.00062208 0.00179899 0
Root;k_Bacteria__Firmicutesic_| | 000382364 000346621 0.01474305 0.00900742 0.01041991 000287839 0.00391134
Root;k_Bacteria__Firmicutesic L L 000143386 0 000400169 0.00229601 0.00139969 0.00011993 0.00065189
Streptococcaceae;g_Streptococcus;Other ) 0 000042123 0.00141293 00003598 0
= = 000561596 000129983 0.00379107 0.0044154 0.00155521 0.0010794 0.00130378
0 0

000071693 000015552 0.00059966

[
09057235 033838822 011120472 061691982 0.10326594 029779324 0.13276836

This is a dense table, with a lot of 0; the meaning of 0 values in unclear: they might
mean absence or presence below the detection limit; this again would depend on the
filtering options; were singleton and doubletons discarded? etc. If you want to run a
correlation analysis rows with many 0 would inflate the correlation; different library
sizes may seriously affect



Typical output 1 — Diversity indices

seq.

before seq. after observed
label cleanup cleanup dairy cycle species shannon  chaol Goods' ESC
CL1-4 | 4148 3759 1 4 42 1.67 72.00 0.9909
CL1-7 4082 3206 1 7 35 0.49 44.10 0.9956
‘ CL2-4 7063 5662 2 4 54 1.57 82.88 0.9961
CL2-7 8038 6746 2 7 39 1.32 49.11 0.9979
‘ CL2-13 4696 3987 2 13 21 1.20 26.25 0.9982
CL3-4 6604 5334 3 4 13 0.07 31.00 0.9983
‘ CL3-7 7610 6160 3 7 16 0.07 71.00 0.9982
CL4-4 9838 8369 4 4 57 0.98 111.17 0.9969
‘ CLa-7 6241 4930 4 7 51 131 75.43 0.9961
CL5-4 6914 5510 5 4 19 0.07 41.00 0.9978
‘ CL5-7 6135 5274 5 7 51 1.17 58.80 0.9975
CL5-13 5318 4190 5 13 16 1.15 19.00 0.9986
‘ CL6-7 9250 7483 6 7 52 0.34 119.67 0.9961
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Typical output 2 — Rarefaction curves
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Typical output 3 — Pseudo-heat map

Dissimilarity : - (1 - Pearson's correlation coefficient)
The colors scale:

Min = -2.00 0.00

[
cccccccc L
[ g
46153357 -
47747474 2

5. thermophilus
L. delbrueckii
Enterobacter hormaechei
Lactococous sp

Lact. raffinolactis

Lact. lactis

5. parauberis
Enterobacteriaceae
Raouttella sp.
Aeromenas sp.
Acinetobacter sp.
Streptococcaceae
Camobacterium sp.
Lact. garviae
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Network analysis tools for food microbial ecology

Typical output 4 — PcoA plot, weighted
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Beyond species: NGS monitoring of S.
thermophilus biotypes based on serB
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starter culture
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® SEQ5
SEQ6_SERB25
SEQ8_SERB7
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Mining next-generation sequencing studies in
food microbial ecology

Quantitative information on the structure of food microbial
communities is rapidly accumulating but extracting this information
(for the purpose of writing reviews, designing new experiments, for
food process development) is far from simple.

Alternatives:
process sequences from SRA with -
own bioinformatics pipeline
extract data from published
papers

use abundance tables provided
by authors

point 2 needs unplotting, labour intensive, cannot get the exact data, difficult to
compare. So, approach 1 leaves the biases/differences related to target,extraction/
amplification, platform/protocol, 2 almost useless, 3 affected by several biases but at
least biases are known



- 17 studies (14 published, 3
unpublished) on milk, dairy
products and starters(10
studies/315 samples), meat -
and fermented meat (3/168), — EEEEEEEET
sourdoughs (3/39), olives .

(1/20)

- target: 16S RNA gene or 163
RNA, V1-V3 or V6-V7

- platforms: 454 GS Junior, 454 i BT
GS FLX

- 552 sample nodes, 964 OTU
nodes, 18,115 OTU-sample
edges

..........

Sequencing-Based Analysis of the Bacterial and Fungal
Compasition of Kefir Grains and Milks from Multiple
Sources

includes the equivalent of almost 20% of published studies, so it is reasonably
representative



FoodMicrobionet flowchart

OTU abundance raw edges, nodes and web visualisation

tables, sample projects tables

description tables,

project tables from Geis

n studies export web %
visualisation

[Eneamam FoodMicrobionet | jtar o extract sub
E @ networks, recalculate
[S222225

stats and layout
edit metadata

R

import in OTU or food group

i

e for OTU and
i b networks
samples Gephi,
ﬁ E calculate stats
for nodes, export nodes Tables
[maswansi] apply styles and edges import and

and layout tables ocess in Excel,
Systat, Cytoscape

Summary Summary Microbial

tables graphs interaction
networks

The rationale behind FoodMicrobionet. FoodMicrobionet as a database designed for
network analysis tools FoodMicrobionet tools, examples in the following slides
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Structure of edges and nodes tables

- Edges
- source node label
(OTU lineage)
- farget node label
(food sample)

- type (undirected)

- weight (OTU
abundance in sample)

- administrative fields
(gene target, etc.)

- Nodes (metadataq)

- node type (OTU,
sample)
- “taxonomy”
OTU lineage for OTUs
FoodID and FoodEx 2
classification
- other administrative
fields (outlinks to NCBI
and dx.doi.org,
custom fields, etc.)

67



Netw

alysis tools for food mici

al ecology

68

Network representation of the abundance
matrix

B

SENEEEEEEEEERE
o 3 o

CLa-4
CLa-4
CLa-4

[ C [ E F
Id Label Weight
Acinetobacter Directed 1 0.02389772
Aeromonas Directed 2 0.01194886
Bacilli Directed 3 0.09559088
Carnobacterium Directed 4 0.31067032
Citrobacter Directed 5 0.02389772
Enterob. hormaeche Directed 6 0.02389772
L. delbrueckii Directed 8 0.01194886
Lactoc. garviae Directed 9 0.6332895
Lactoc. lactis Directed 10 0.3823635
Lactoc. raffinolactis Directed 11 0.1433863
Lactococcus Directed 12 6.5599236
Leuconostoc Directed 13 0.01194886
Other Directed 14 0.02389772
Raoultella Directed 15 0.09559088
S. parauberis. Directed 16 0.5615964
S. suis Directed 17 0.07169315
S. thermophilus Directed 18 90.57235
Streptococcaceae  Directed 19 0.03584658
Enterobacteriaceae Directed 327 0.4062612
Acinetobacter Directed 21 0.12998267
Aeromonas Directed 22 0.08665511
Carnobacterium Directed 24 0.12998267

1 1 Type Oomain __ Phylum __Class Fomdy _ Genws ___Species
34 Microbacteri Microbacterl | OTU Bacteria
351 plurinima pluranimal | OTU
36 Enteroc. faec Enteroc faed | OTU Bacteria  Fumicutes Bacill Enterococead Enterococeus Enterococeu:
Enterod. cow Enterob.con | OTU Bacteria
Chryseobact Chryseobacty | OTU Bactena
M rravobacte ory Bacteria
40 Preudodavit Preudoclavit, | OTU Bacteria
41 Ps. mandeli Ps. mandeli|  OTU Bacteria
42 | Aerococcace Aerococcace | OTU Bacteria  Fimicutes Bacill  Aerococcace Aerococcace Aerococcace
43 | Gammaprotc Gammaprotd  OTU Bactera
oy Bacteria  Fumicutes Bacili  Staphylococe Staphylococe Staphylococe
o Bacteria  Fimicutes  Clostridia  Clostridiacea Clostridium  Clostrdium |
o Bactera Fumicutes  Clostridia  Clostridiacea Sorcina.  Sarcina sp
or Oacteria  Fumicutes Other  Other her  Firmicutes
48| Novospuilur Novospiilur  OTU oacteria Novospi
49 |weochothvix Beochathvix | OTU Oacteria  Fumicutes Bacll Usteriaceae Beochothrix. Brochathrix s
50 | Lactobacilus Lactobacilug | OTU octeria  Fumicutes Bacll Lactobacilac Lactobacilus Lactobacillus
51 Lactoc. garvh Lactoc. garvi | OTU Bacteria Bacill Streptococca Lactococeus Lactococcus
52 5. pluranimal . pluranimal | OTU Bacteria  Fumicutes Bacill  Streptococea Sreptococes Streptococce
53| Enterobacter Enterobacted | OTU facteria
54 caa asd Sample  NA N nA A A A
55 jaua cua Sample  NA NA nA NA A A
56las?  as? Sample  NA N A "M A A
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Web visualisation

Network analysis tools for food microbial ecology

69

http://www.foodmicrobionet.org/fmbn1_0_3web/
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Network analysis tools for food microbial ecology

A filtered version

70

The flowchart in network representation: filter
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Network analysis tools for food microbial ecology

Food specific networks, dairy

Canestrato Pugliese cheese Lo raw milk

C.

Kefir milk

L‘fu‘deﬁned whey
= cultyres and cheese
curd®,

71
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more graphs

Phylum

o Actinobacteria

@ 4 Armatimonadetes
3 o 1 Bacteroidetes
o —an-3 3 o Chloroflexi
%’ - e Cyanobacteria
=) A Fibrobacteres
%’ m Firmicutes
+ Proteobacteria
o TM7
a Tenericutes
| ' L 0 Thermi
001 02 03 04 05 06 07 08 09 10 T TV T TV NN E
Relative occurrence ©
b 3
$%F FUSOBACTERIA W ACIDOBACTERIA
S« B PLANCTOMYCETESHE ACTINOBACTERIA
25 PROTEOBACTERIA i BACTEROIDETES
B SPIROCHAETES CHLOROFLEXI
> TENERICUTES CYANOBACTERIA
10 THERMI ® FIBROBACTERES
. _|_|| 1 1 OTHER FIRMICUTES

on the left a graph showing weighted degree (sum of abundances) as a function of
relative occurrence (frequency in samples) for meat products; on the right
abundance of different phyla in different food groups A02xxx are cheeses and milks,
A48 starters, A049S meat products, A01QX fresh meat



Co-occurrence/co-exclusion networks

Pseud@nonas

@s equorum

Scllm

Enteroba@eriaceae

Actinob@teriac

OreN B ACEESS Freaty svalable onlne DPLOS om

Exploring the Sources of Bacterial Spoilers in Beefsteaks
by Culture-Independent High-Throughput Sequencing

Francest ca De Filippis”, Antonietta La Storia®, Francesco Villani, Danilo Ercolini*

left beef all samples (similar to time 0): 187 nodes, diameter 5, ave degree 35.15,
right beef, spoiled; obtained using conet/cytoscape, measure co-occurrence/co-
exlusion, not necessarily interactions,

Microbial interaction network analysis on selected datasets showed that the
complexity (in terms of network size, average path length and modularity) of OTU-
OTU networks increased with the complexity of the microbial community. It was
lowest for kefir and for undefined starters and fresh cheeses, increased in surface
ripened cheese, and was largest for raw meat samples. However, it was lower than
that found in other microbial communities (human microbiome, soil and other
environmental microbial communities), with no fit of the potewr law, clustering
coefficients usually higher than corresponding random networks. As a comparison:
Deng et al., provided stats for networks from environmental and human sources;
network size ranged from 107 to 254 nodes, the node degree distribution showed a
good fit of the power law for all networks and the modularity (which measures the
occurrence of modules which are strongly interconnected) was significantly higher
than that of random networks, while the occurrence of a hierarchical structure was
variable
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Network properties: food vs other

environments

soil microbial communities (Deng et al., 2012): OTU-
OTU networks tend to be small world and scale-free, with
small APL (similar order of magnitude to logN) and a
hierarchical organization

human microbiome (Faust et al., 2012): scale-free, short
APL, high modularity, niche-specific relationships with a
few hubs connecting different body areas; strong co-
occurrence among phylogenetically similar organisms and
exclusion among distant ones, no hierarchical
organization

food ???: nothing is known on food microbial
communities studies are generally small, and diversity is
limited

Faust data from the initial cohort of the Human microbiome project, 239 individuals
18 habitats, network with 197 clades (several taxonomic levels) with 2005 significant
relationships



Dataset

Kefir
Mozzarella
Fontina, all
samples
Fontine, cheese
NWC and curd
NWC and curd,
Mozzarella
NWC and curd,
Grana type
Piedmont hard
cheese, all
Beef, all

Beef, spoiled

Hamburger

Fermented meat

Reference
Marsh etal,,
2013

Guidone et al.,

2015

Dolci et al,,
2014

Dolci et al,
2014

De Filippis et
al, 2014

De Filippis et
al, 2014

De Filippis et
al, 2014
Cocolinetal,,
unpublished
De Filippis et
al, 2013

De Filippis et
al, 2013
Cocolin et al.,
unpublished
Greppi et al.,
2015

Samples OTU Nodes Components Diameter

48

29

27

18

50

24

26

39

108

45

52

30

61

77

296

158

49

34

33

344

827

108

129

74

7

22

27

2

2

2

Average
Degree

3.14
4.18

5.19

3.11
35.15

1.46

3.67

Average

Path
Length

2.19

1.92

295

1.36

1.83

2.35

1.60

Clustering
Coefficient

0.712
0.453
0.235
0.152
0
0
0
0.463

0.544

0.709

0.462

Co-occurrence/co-exclusion networks: stats

Clustering
Coefficient
random
network
0.449
0.19
0.192

0.181

0.282

0.297

0.300

0.305

As a comparison: Deng et al., provided stats for networks from environmental and
human sources; network size ranged from 107 to 254 nodes, the node degree
distribution showed a good fit of the power law for all networks and the modularity
(which measures the occurrence of modules which are strongly interconnected) was

significantly higher than that of random networks, while the occurrence of a
hierarchical structure was variable
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Conclusions

network analysis is a powerful tool for studying emerging
properties in microbial communities

although network analysis tools have been mostly used
for the representation of sample-OTU relationships or for
the study of co-occurrence/co-exclusion, rapid
accumulation of high resolution data on molecular
characterization of microbial communities is extremely
promising for formulating hypotheses on the structure and
dynamics of microbial networks under a range of
situations
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