MULTIVARIATE STATISTICAL ANALYSIS FOR FOOD SCIENCE AND AGRICULTURE: AN INTRODUCTION 5. CLUSTER ANALYSIS Prof. Eugenio Parente Scuola di Scienze Agrarie - Università della Basilicata

Outline

- objectives of Cluster analysis
- what is a cluster?
- more on multivariate displays
- similarity/dissimilarity measures for categorical and continuous data
- hierarchical cluster analysis (agglomerative techniques)
- optimization clustering techniques (k-means)

Objectives of cluster analysis

Problem: given a set of *n* objects or individuals for each of which *p* variables (characters, attributes) have been measured, find a classification scheme to group the objects in classes , find the number of classes (g) and their characteristics. The objectives of the analysis may be:

- 1. explorative data analysis
- 2. data reduction
- 3. finding a "true" (natural) classification
- 2. fitting a model
- 3. make predictions based on groups
- 4. generating and testing hypotheses on groups

According to Kendal and Buckland a cluster is a contiguous grop of elements in a statistical populations.

Another more operational definition is based on **internal cohesion (homogeneity)** and **external isolation (separation)**: in a *p*-dimensional space a (natural) cluster may be defined as a continuous portion containing a relatively high density of points separated from other clusters by regions of space containing a relatively low density of points

open file <u>Clusters\clusters.syo</u> for some simple examples of clusters and for the effect of clustering technique and standardization on cluster structure

An artificial dataset

An artificial dataset

More on multivariate displays

Bivariate or 3-D graphs with density displays on original data may not be of much assistance in exploring the data with large numbers of variables. You can:

- try the same graphs on PCA score plots and on MDS plots
- use a variety of multivariate displays
 - Andrew's Fourier plot
 - Parallel coordinates displays
 - Icon plots

More on multivariate displays: parallel plot

caseigroup

enterococci

More on multivariate displays: Andrew's Fourier transform

More on multivariate displays: density search on PCA score plots

More on multivariate displays: density search on PCA score plots the technolab example

More on multivariate displays: density search on MDS maps (the RP-HPLC example)

More on multivariate displays: density search on MDS maps (the RAPD-PCR example)

More on multivariate displays: SPLOM on MDS score plots (RAPD-PCR example)

More on multivariate displays: icon (star) plot (technolab example)

More on multivariate displays: icon (profile) plot (technolab example)

More on multivariate displays: icon (Fourier bubbles) plot (technolab example)

		φ	φ	\Leftrightarrow	$\langle \rangle$	P	\mathcal{P}	$\langle \varphi \rangle$
		caseigroup	caseigroup	caseigroup	caseigroup	caseigroup	caseigroup	caseigroup
		\Diamond	\Diamond	$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\sim	P	S	$\langle \rangle$
		caseigroup	caseigroup	caseigroup	caseigroup	caseigroup	caseigroup	caseigroup
		\mathcal{C}	\Leftrightarrow	\Leftrightarrow	$\langle \! \! \! \! \! \rangle$	\diamond	φ	\heartsuit
		caseigroup	caseigroup	caseigroup	caseigroup	caseigroup	caseigroup	caseigroup
		\heartsuit	\heartsuit	φ	φ	φ	P	P
		caseigroup	caseigroup	caseigroup	caseigroup	caseigroup	caseigroup	caseigroup
		\bigcirc	\mathcal{O}	φ	$\langle \rangle$	Ş	φ	\Diamond
		lattococci	caseigroup	caseigroup	caseigroup	caseigroup	caseigroup	caseigroup
		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\Diamond	\heartsuit	\heartsuit
		lattococci	lattococci	lattococci	lattococci	lattococci	lattococci	lattococci
		\Diamond	\bigcirc	\bigcirc	\bigcirc			\bigcirc
IP	GROU	lattococci	lattococci	lattococci	lattococci			lattococci
		\bigcirc	\sim	\bigcirc	\bigcirc	\bigcirc	$\langle \rangle$	\bigcirc
caseigroup		lattococci	lattococci	lattococci	lattococci	lattococci	lattococci	lattococci
lattococci				\bigcirc	\bigcirc	\Diamond	\bigcirc	\bigcirc
				lattococci	lattococci	lattococci	lattococci	lattococci

More on multivariate displays: icon (Chernoff's faces) plot (technolab example)

GROUP

caseigroup lattococci

More on multivariate displays: icon (Chernoff's faces) plot (technolab example)

