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Here we studied the error bound of Gauss-Legendre quadrature for analytic functions. The
basic idea is to express the remainder of Gauss-Legendre quadrature as a contour integral,
then the error bound is reduced to find the maximum of the kernel function:

Kn(z;ω) =
%n(z;ω)

πn(z)
, %n(z;ω) =

∫ 1

−1

πn(t)

z − t
dt, z ∈ C \ [−1, 1]. (1)

Inspired by the work of [1] and applying the results of [2], we obtained explicit and asymp-
totic formula of the kernel function Kn(z;ω) as ρ → ∞. Explicit expression is used for
determining location on the ellipses where maximum of the modulus of the kernel is at-
tained.
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