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In [2] it was introduced a trigonometric barycentric interpolant of an arbitrary 2m-periodic
function in [0,27) on some ordered nodes 0 < 0y < ... < 0,1 < 2w which converges expo-
nentially when the nodes are equidistant points or their images under a periodic conformal
map [1] and has a logarithmic growth of the Lebesgue constant for a wide class of nodes [3].
We present here an iterative method to construct a trigonometric Hermite interpolant based
on the latter interpolant. In fact, by using the auxiliary function
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and the basis function b;(f) of the interpolant, it is possible to construct in an iterative
way, similarly as done in [4] for the Floater-Hormann family of interpolant, the Hermite
interpolant by considering
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and therefore the interpolant
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Furthermore, to implement it numerically we compute the differential matrix of the resulting

interpolant at each iteration.
Finally, we are going to present some numerical tests.
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