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In [2] it was introduced a trigonometric barycentric interpolant of an arbitrary 2π-periodic
function in [0, 2π) on some ordered nodes 0 ≤ θ0 < ... < θn−1 < 2π which converges expo-
nentially when the nodes are equidistant points or their images under a periodic conformal
map [1] and has a logarithmic growth of the Lebesgue constant for a wide class of nodes [3].
We present here an iterative method to construct a trigonometric Hermite interpolant based
on the latter interpolant. In fact, by using the auxiliary function

di(θ) = 2 sin

(
x− xi

2

)
and the basis function bi(θ) of the interpolant, it is possible to construct in an iterative
way, similarly as done in [4] for the Floater-Hormann family of interpolant, the Hermite
interpolant by considering

bi,j(θ) =
1

j!
di(θ)

jbi(θ)
j+1

and therefore the interpolant

rj(θ) =
n∑

i=0

m∑
j=0

bi,j(x)gi,j

where
gi,0 = f(θi) gi,j = f (j)(θi)− r

(j)
j−1(θi).

Furthermore, to implement it numerically we compute the differential matrix of the resulting
interpolant at each iteration.
Finally, we are going to present some numerical tests.
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