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Suppose that {p,}5° is a sequence of one variable real polynomials, which is orthogonal
with respect to a Borel measure on R. Then {p,}22, satisfies the three term recurrence
relation, i.e.

1’]9”(1') = anpn—l—l(w) + bnpn(x) + an—lpn—l(w)y n =0,
with some a,,b, € R (with a_; := 0 and p_; := 0). The Christoffel-Darboux formula is
the equation:

n oy ):anpn+1(a:)pn(y)—pn(a;)pnﬂ(y).
;Op piy )

We are going to discuss a natural generalization of these formulas in the case of polynomials
of several real variables. The three term recurrence relation is then the set of equations:

Xan = An,an-l—l + Bn,an + A;r‘L_Lan—l? nz 07 j = 17 cee 7d7

where {Q;}72, is a system of real orthogonal polynomials arranged in columns, where Q,
consists of polynomials of degree k; then A, ; and B, ; are real matrices of appropriate
sizes. The notation “=” stands for “equality modulo an ideal V”, which is inevitable, if
we want to act in full generality (including e.g. polynomials orthogonal on a circle); this is
a far-reaching refinement of results from [3, 4] published in [1]. The Christoffel-Darboux
formula takes the form:

Va

(zj —yi) Y QEW)Qk(x) = [AnjQu1(1)]TQn(y) — Qu(x)[An jQnia ()],
k=0

where Vo =V ®Py+Py®V with Py standing for the space of all polynomials in d variables
(see [2]). Hopefully, the talk will be concluded with some examples (if time allows).
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