Operators in Function Spaces: convergence properties and applications

Nonlinear composition operators in Grand Lebesgue spaces
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Let Q be an open subset of R™ of finite measure. Let f be a Borel measurable function
from R to R. We prove necessary and sufficient conditions on f in order that the composite
function Ty[g] = f o g belongs to the Grand Lebesgue space Ly ¢(£2) whenever g belongs to
Ly 6(92).

We also study continuity, uniform continuity, Hélder and Lipschitz continuity of the com-
position operator Ty in Ly, ().
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In this talk we discuss approximation formulas for the fractional Laplacian (—A)®/2, 0 <
«a < 2, in the framework of the method approximate approximations. The fractional Lapla-
cian appears in different fields of mathematics (PDE, harmonic analysis, semi- group theory,
probabilistic theory) as well as in many applications (optimization, finance, materials sci-
ence, water waves). If we introduce the convolution
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then the fractional Laplacian can be represented as the ordinary Laplacian of the volume
potential N, f,

(—A)*2f(x) = —ANL(f)(x). (2)

We propose a method of an arbitrary high order for the approximation of N, f and (—A)a/ 2f,
n > 3, which is based on the approximation of the function f via the basis functions in-
troduced by approximate approximations (cf. [2]), which are product of Gaussians and
special polynomials. Then the n-dimensional integral (1) applied to the basis functions is
represented by means of a one-dimensional integral where the integrand has a separated
representation, i.e., it is a product of functions depending only on one of the variables.

This construction enables to obtain one-dimensional integral representations with separated
integrand also for the fractional Laplacian (2), when applied to the basis functions. An



accurate quadrature rule and a separated representation of the density f provide a separated
representation for NV, f and (—A)a/ 2f. Thus, only one-dimensional operations are used and
the resulting approximation procedure is fast and effective also in high-dimensional cases,
and provides approximations of high order, up to a small saturation error. We prove error
estimates and report on numerical results illustrating that our formulas are accurate and
provide the predicted convergence rate 2,4, 6,8 (cf. [1]).
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