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A Paley-Wiener theorem is a characterization, by relating support to growth, of the image of
a space of functions or distributions under a transform of Fourier type. This relation comes
in terms of a compact and convex set in which the support of the function or distribution is
included. In fact, the growth of f on C? enables to retrieve the convex hull of the support
of f, but no more precise information can be obtained from it. In the last years, a new type
of results called “real Paley-Wiener type theorems” has received much attention. The idea
is to try to bypass this theoretical obstruction for the classical Paley-Wiener theorems to
“look inside” the convex hull of the support. The word “real” expresses that information
about the support of f comes from growth rates associated to the function f on R? rather
than on C? as in the classical “complex Paley-Wiener theorems”. This theory was initiated
by Bang, and here we follow the approach of Andersen and Andersen-De Jeu, facing the
problem from the opposite point of view: starting by a rapidly decreasing function f we try
to get information on the support of f , which could be non-compact or even non-convex.
In particular, in [4] we work in the space S, (R?) of rapidly decreasing ultradifferentiable
functions for a weight w (if w(t) = log(1+t) then S, is the classical Schwartz space S) and
obtain the radius R ; of the support of f (which may be also +00) in terms of the derivatives
of f or the Wigner transform of f:
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