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In this talk, structured optimisation problems of kind arg minx∈Xf(x, y) + λg(x) are con-
sidered as general form of Tikhonov-like functionals, where f : X × Y −→ R represents a
smooth convex fidelity term between the data y ∈ Y and the solution x ∈ X, g : X −→ R is
a proper, l.s.c., (possibly non-smooth) convex penalty term, and λ > 0 is the regularization
parameter. In our approach, X and Y are both unusual variable exponent Lebesgue spaces
Lp(·), that is, Lebesgue spaces where the exponent is not a constant value, but rather a
function of the position of the domain [2, 3]. Due to their intrinsic space-variant geometri-
cal properties, such Banach spaces can be naturally used for defining adaptive algorithms
for the solution of ill-posed inverse problems.
For this purpose, we propose a proximal gradient algorithm in the (dual space of) Lp(·),
where the proximal step is defined in terms of the modular function

ρp(·)(x) :=

∫
Ω

1

p(t)
|x(t)|p(t)dt,

which, thanks to its separability, allows for an efficient computation of the algorithmic
forward-backward type iteration

xk+1 = arg minx∈Lp(·)ρp(·)(x− xk) + λk〈∇f(xk), x〉+ λkg(x).

Convergence in function values is proved, with convergence rates depending on problem/space
smoothness [5]. To show the effectiveness of the proposed modelling, some numerical tests
highlighting the flexibility of the space Lp(·) are shown for exemplar signal and image de-
convolution with mixed noise removal problems [5, 1, 4].
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