On the minimum growth rate of solutions to linear switched systems

Nicola Guglielmi^{*a*}, Marino Zennaro^{*b*}

 ^a Gran Sasso Science Institute, L'Aquila (Italy)
^b Dipartimento di Matematica e Geoscienze, Università di Trieste (Italy) nicola.guglielmi@gssi.it, zennaro@units.it

We deal with discrete-time *linear switched systems* of the form

 $x(n+1) = A_{\sigma(n)} x(n), \quad \sigma : \mathbf{N} \longrightarrow \{1, 2, \dots, m\},\$

where $x(0) \in \mathbf{R}^k$, the matrix $A_{\sigma(n)} \in \mathbf{R}^{k \times k}$ belongs to a finite family $\mathcal{F} = \{A_i\}_{1 \le i \le m}$ and σ denotes the *switching law*.

It is known that the most stable switching laws are associated to the so-called spectrumminimizing products, that is those products $P = A_{i_1}A_{i_2}\cdots A_{i_k}$ whose average spectral radius $\rho(P)^{1/k}$ equals the lower spectral radius $\check{\rho}(\mathcal{F})$ of the family \mathcal{F} . For families \mathcal{F} sharing an invariant cone K, in this talk we show how to provide lower bounds to $\check{\rho}(\mathcal{F})$ by a suitable adaptation of the Gelfand limit in the framework of antinorms (Guglielmi & Z. [?]).

Then we briefly consider families of matrices \mathcal{F} that share an invariant *multicone* K_{mul} (Brundu & Z. [?, ?]) and mention some generalizations of the known results on antinorms to this more general setting (Guglielmi & Z. [?]).

References

- M. Brundu, M. Zennaro, Multicones, duality and matrix invariance, J. Convex Anal. 26 (2019), pp. 1021–1052.
- [2] M. Brundu, M. Zennaro, Invariant multicones for families of matrices, Ann. Mat. Pur. Appl. 198 (2019), pp. 571–614.
- [3] N. Guglielmi, M. Zennaro, An antinorm theory for sets of matrices: bounds and approximations to the lower spectral radius, Lin. Algebra Appl. 607 (2020), pp. 89–117.
- [4] N. Guglielmi, M. Zennaro, Antinorms for sets of matrices sharing an invariant multicone, (in preparation).