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We say that a compact set ∅ 6= E ⊂ Rm satisfies Lp Markov type inequality (or: is a Lp
Markov set) if there exist κ,C > 0 such that, for each polynomial P ∈ P(Rm) and each
α ∈ Nm0 ,

‖DαP‖Lp(E) ≤ (C(degP )κ)|α|‖P‖Lp(E), (1)

where DαP = ∂|α|P
∂x
α1
1 ...∂xαmm

and |α| = α1 + · · ·+ αm.

Clearly, by iteration, it is enough to consider in the above definition multi-indices α with
|α| = 1. The inequality (1) is a generalization of the classical Markov inequality:

‖P ′‖C([−1,1]) ≤ (degP )2‖P‖C([−1,1]).

In this talk we shall consider the following problem:

For a given Lp Markov set E determine µp(E) := inf{κ : E satisfies (1)}.

Our goal is to establish Lp Markov exponent of the following domains

K := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, axk ≤ y ≤ f(x)},

where k ∈ N, k ≥ 2, a > 0 and f : [0, 1] → [0,∞) is a convex function such that f(1) > a,
f ′(0) = f(0) = 0, f ′(1) <∞, and (f)1/k is a concave function on the interval (0, 1).
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