L_p Markov exponent of certain UPC sets

Tomasz Beberok a

^a Department of Mathematics, University of Applied Sciences in Tarnow (Poland) t_beberok@pwsztar.edu.pl

We say that a compact set $\emptyset \neq E \subset \mathbb{R}^m$ satisfies L_p Markov type inequality (or: is a L_p Markov set) if there exist $\kappa, C > 0$ such that, for each polynomial $P \in \mathcal{P}(\mathbb{R}^m)$ and each $\alpha \in \mathbb{N}_0^m$,

$$\|D^{\alpha}P\|_{L_{p}(E)} \leq (C(\deg P)^{\kappa})^{|\alpha|} \|P\|_{L_{p}(E)},\tag{1}$$

where $D^{\alpha}P = \frac{\partial^{|\alpha|}P}{\partial x_1^{\alpha_1}...\partial x_m^{\alpha_m}}$ and $|\alpha| = \alpha_1 + \cdots + \alpha_m$.

Clearly, by iteration, it is enough to consider in the above definition multi-indices α with $|\alpha| = 1$. The inequality (1) is a generalization of the classical Markov inequality:

$$||P'||_{C([-1,1])} \le (\deg P)^2 ||P||_{C([-1,1])}.$$

In this talk we shall consider the following problem:

For a given
$$L_p$$
 Markov set E determine $\mu_p(E) := \inf\{\kappa : E \text{ satisfies } (1)\}.$

Our goal is to establish L_p Markov exponent of the following domains

$$K := \{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ ax^k \le y \le f(x) \},\$$

where $k \in \mathbb{N}$, $k \ge 2$, a > 0 and $f : [0,1] \to [0,\infty)$ is a convex function such that f(1) > a, f'(0) = f(0) = 0, $f'(1) < \infty$, and $(f)^{1/k}$ is a concave function on the interval (0,1).

References

- M. Baran, W. Pleśniak, Markov's exponent of compact sets in Cⁿ, Proc. Amer. Math. Soc., 123 (1995), pp. 2785–2791.
- [2] T. Beberok, L_p Markov exponent of certain domains with cusps, Dolomites Res. Notes Approx., 14 (2021), pp. 7–15.
- [3] A. Kroó, Sharp L_p Markov type inequality for cuspidal domains in \mathbb{R}^d , J. Approx. Theory, 250 (2020), 105336, 6pp.