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We report on our recent progress concerning the explicit algebraic solution of Zolotarev’s
First Problem (ZFP) of 1868 ([1], [2]), thus avoiding the application of elliptic functions.
ZFP asks to determine, for n > 4 and s > tan?® (%), the proper Zolotarev polynomial 7,
which deviates least from zero in the uniform norm on [—1,1] among all polynomials of
form 2" 4 (—ns)z"~! + ... . By parametrization of algebraic curves, we have obtained
in [4] a radical parametrization for Z7 s (currently the highest degree attacked by that
method). Out of it, the solution of ZFP, for n = 7, can be recovered. In [3] we considered
two alternative algebraic algorithms for explicitly solving ZFP (one was inspired by [5]).
We now add a third one (inspired by [6]). Each algorithm creates a particular tentative
form (depending on parameters o and § with 1 < o < f8) of Z,, ;. To get the final form
of Z, s for the concretely chosen n = ng and s = sg, the algorithms require as input
compatible points a = ag and § = fy (depending on ng and sg). In [3] we considered one
variant how to determine o and 5y. We now add two more variants. The variants involve
Malyshev polynomials Fj,(a) and G, (f), determinants with variable elements d; j(c, ),
reduced relation curves H,(«, ) = 0, and function equations of form s,(c,3) = s. We
show how to generate these terms by means of Mathematica-functions, e.g., GroebnerBasis.
Pre-computed data to facilitate the computation of Z,, s and concrete examples, if n < 13,
are provided and further existing non-elliptic approaches to ZFP are referenced.
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