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We consider a metric space (U, ρ), two abitrary nonempty sets X,Y , a map (duality map)

D : X × Y → U

such that the partial functions Dx, Dy on Y , respectively X are totally bounded.
If d′, d′′ are the metrics on X, respectively Y given by:

d′(x′, x′′) = sup{ρ (Dx′(y), Dx′′(y)) ; y ∈ Y }

d′′(y′, y′′) = sup{ρ
(
Dy′(x), Dy′′(x)

)
;x ∈ X}

then the following assertions hold:

1. The metric space (X, d′) is totally bounded iff the metric space (Y, d′′) is totally
bounded.

2. The family (Dx)x of functions on Y has ”finite small oscillations” iff the family (Dy)y
has a similar property on X.

The well-known assertions: Schauder theorem on compact linear operators, Scorohad com-
pactness criterion with respect to a specific distance on trajectories, the famous Arzelà
-Ascoli theorem...may be derived from the above assertions.
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