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In this presentation we consider the numerical approximation of acoustic wave problems
with absorbing boundary conditions by the Isogeometric discretization in space, and New-
mark scheme in time, both explicit and implicit [2, 5]. Isogeometric Analysis (IGA) allows
not only the standard p- and hp- refinement of hp- finite elements and spectral elements,
where p is the polynomial degree of the C0 piecewise polynomial basis functions, but also
a novel k- refinement where the global regularity k of the IGA basis functions is increased
proportionally to the degree p, up to the maximal IGA regularity k = p− 1 [2].
In the framework of NURBS-based IGA, first we have considered Galerkin approaches [4]
and then we have moved on to collocation methods, that in general optimize the computa-
tional cost, still taking advantage of IGA geometrical flexibility and accuracy [1, 3].
Proper boundary conditions are also considered. While homogeneous Neumann conditions
provide a good mathematical representation of a free surface, absorbing boundary conditions
are imposed in order to simulate wave propagation in infinite domains, by truncating the
original unbounded region into a finite one.
Several numerical examples illustrate the stability and convergence properties of the nu-
merical collocation IGA methods with respect to all the IGA approximation parameters,
namely the local polynomial degree p, regularity k, mesh size h, and to the time step size
∆t of the Newmark schemes [5]. Some numerical results on the spectral properties of the
Collocation IGA mass and stiffness matrices are also presented.
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