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Fractional derivatives and equations containing them have fascinated scientists for a very
long time. Over the last few decades interest in the field has increased significantly because
of new applications in Physics, Chemistry, Electrical Networks and so on [1, 3].
In [2], the unique solvability of singular fractional differential equations was studied. In the
current talk we consider singular fractional integro-differential equations of the form
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where the multiplication operator Mν is defined by

(Mνu)(t) = tνu(t), 0 < t ≤ T, ν ∈ R, u ∈ C[0, T ],

V is a certain type of Volterra integral operator, α, αk, b, bk,∈ R, and

m < α ≤ m+ 1, α > αk ≥ 0, f ∈ Cm[0, T ], k = 1, 2, . . . , l, m ∈ N0 = {0, 1, 2, . . . }.

By Cm[0, T ] (m ∈ N0) we denote the space of m times continuously differentiable functions
u on [0, T ]; C0[0, T ] = C[0, T ]. In equation (1) the fractional differential operator Dµ

0 , of
order µ ∈ [0,∞), is defined as the inverse of the Riemann-Liouville integral operator

(Jµu)(t) =
1

Γ(µ)

∫ t

0
(t− s)µ−1u(s)ds, u ∈ C[0, T ], t > 0, µ > 0; J0 = I,

where I is the identity mapping and Γ the Euler gamma function.
In the talk we present some results about the unique solvability of equations of the form
(1) and introduce a collocation based scheme for finding the numerical solution of such
equations. We also give results of numerical experiments.
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