S11 Recent Advances in the Analysis and Numerical Solution of Evolutionary Integral Equations

A posteriori error estimates for time discretization of abstract semi–linear fractional integro–differential equations

E. Cuesta^a, **Speaker**^a, R. Ponce^b

^a Department of Applied Mathematics, University of Valladolid (Spain)
^b Institute of Mathematics, University of Talca (Chile)
eduardo.cuesta@uva.es, eduardo.cuesta@uva.es speaker, rponce@inst-mat.utalca.cl

The aim of this work is to provide a posteriori error estimates for time discretization of abstract semi-linear time fractional equations

$$\partial_t^\beta u(t) = Au(t) + F(u(t)), \qquad 0 < t \le T, \tag{1}$$

where ∂_t^{β} stands for the time fractional derivative operator of order $\beta > 0$ in Riemann– Liouville sense, $1 < \beta < 2$, A is an abstract linear operator in a complex Banach space X, $A: D(A) \subset X \to X$, and F(u) a reaction term under certain regularity conditions.

Our a posteriori error estimates (see [2]) are achieved through the maximal Hölder regularity of the analytical solution u(t) to (1) in the context of θ -sectorial operators A, $0 < \theta < \pi/2$. This approach has been previously considered for abstract ordinary differential equations, that is those where first time derivative is considered instead of fractional ones ∂_t^{β} (see [1]). In the fractional case the main difficulty arises from the lack of regularity typically occurs for solutions to differential equations involving time fractional derivatives and/or integrals. Even though our work focused on providing estimates in a theoretical framework, throughout the work we show that all constants involved in the final estimates are in actual fact computables in the spirit of genuine a posteriori error estimates.

References

- E. Cuesta, Ch. Makridakis, A posteriori error estimates and maximal regularity for approximations of fully nonlinear parabolic problems in Banach spaces, Numer. Math. 111 (3) (2008), pp. 257–275.
- [2] E. Cuesta, R. Ponce, Hölder regularity for abstract semi-linear fractional differential equations in Banach spaces, Comput. Math. Appl., 85 (2021), pp. 57–68.