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The Wright function is defined by the following power series, convergent in the whole
complex plane,

Wλ,µ(z) :=
∞∑
n=0

zn

n! Γ(λn+ µ)
, λ > −1, µ ∈ C. (1)

Originally Wright assumed λ ≥ 0 in connection with his investigation of the asymptotic
theory of partition [6] and only in 1940 he considered λ ∈ (−1, 0). The latter case is now
referred to in the literature as Wright function of the second kind (WF2K) [7]. Although sev-
eral representations of the Wright function have been introduced and many of its analytical
properties have already been well studied (see, e.g., [2, 3, 4, 5]), its numerical computation
is still an active research area.
In this talk we devote our attention to the numerical evaluation of WF2K, since this is the
most interesting case for applications. We approach this topic by considering a technique
based on the numerical inversion of the Laplace transform combined with a trapezoidal
rule on a parabolic contour. We present some numerical experiments that validate both the
theoretical estimates of the error and the applicability of the proposed technique to represent
the solutions of fractional differential equations [1]. A code package that implements the
algorithm proposed is contained in the repository: github.com/Cirdans-Home/mwright.
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