The weighted Weierstrass Theorem for continuous functions defined on $[0,\infty)$ or on $(-\infty,\infty)$, proved using Bernstein-Chlodovski operators

Theodore Kilgore^{*a*}, **Speaker**^{*a*}

^a Department of Mathematics and Statistics, Auburn University (USA)

kilgota@auburn.edu

The Chlodovski extensions [3] of the classical Bernstein operators [2] were used in Kilgore [4] and [5] to prove the weighted versions of the classical Weierstrass Approximation Theorem, in the situation that the functions to be approximated are defined and continuous upon the interval $[0, \infty)$ using the weight $W(x) = e^{-x^{\alpha}}$ and satisfy $W(X)f(x) \to 0$ as $x \to \infty$. And in the similar case that interval is $(-\infty, \infty)$ using the weight $W(x)e^{-|x|^{\alpha}}$, and $W(x)f(x) \to 0$ as $|x| \to \infty$.

In each of the two above-described contexts, the Weierstrass theorem was already known to hold, but the new proofs were simple, basic in character, completely self-contained and autonomous. However, to approximate continuous functions defined upon $[0, \infty)$ it was necessary in constructing the new proof to assume that $\alpha > 1$, and for continuous functions defined on $(-\infty, \infty)$ one needed to assume that $\alpha > 2$.

Here, it is shown in each case above that the admissible value of α can be reduced. For the approximation on $[0, \infty)$ one may assume that $\alpha > \frac{1}{2}$. And the approximation on $(-\infty, \infty)$ requires $\alpha > 1$. As is known from [1] or [6], these are the least possible values of α for which the weighted version of the Weierstrass approximation can hold in the two respective situations. The proofs of these new results follow from minor changes to the Chlodovski operators.

References

- AHIESER, N. AND BABENKO, K, On weighted polynomials of approximation to functions continuous on the whole real axis, *Doklady Aka. Nauk SSSR (N.S.)*, 57 (1947), 315-318.
- [2] S. BERNSTEIN, Démonstration du theorème de Weierstrass fondeé sur le calcul des probabilités, Commun. Soc. Math. Kharkow (2) 13 (1912-13), 1-2.
- [3] I. CHLODOVSKY, Sur le développment des fonctions définies dans un interval infini en séries de polynômes de M. S. Bernstein, *Compositio Math.*, 4 (1937), 380-393.
- [4] T. KILGORE, On a constructive proof of the Weierstrass Theorem with a weight function on unbounded intervals, *Mediterr. J. Math.*, 14 6, December 2017, article number 217.
- [5] T. KILGORE, Weighted Approximation with the Bernstein-Chlodovsky Operators, "Constructive Theory of Functions, Sozopol 2019", 121-130.
- [6] H. POLLARD, The Bernstein approximation problem, Proc. Amer. Math. Soc., 6 (1955), 402-411.