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Abstract— The use of embedded boards on robots, including
unmanned aerial and ground vehicles, is increasing thanks to
the availability of GPU equipped low-cost embedded boards in
the market. Porting algorithms originally designed for desktop
CPUs on those boards is not straightforward due to hardware
limitations. In this paper, we present how we modified and
customized the open source SLAM algorithm ORB-SLAM2 to
run in real-time on the NVIDIA Jetson TX2. We adopted a
data flow paradigm to process the images, obtaining an efficient
CPU/GPU load distribution that results in a processing speed of
about 30 frames per second. Quantitative experimental results
on four different sequences of the KITTI datasets demonstrate
the effectiveness of the proposed approach. The source code of
our data flow ORB-SLAM2 algorithm is publicly available on
GitHub.

I. INTRODUCTION

Navigation is the main task for an autonomous mobile
robot. In order to move from the current position A to a
desired destination B, a mobile robot needs a map, to know
its position on the map, and to have a plan to get from A to
B, possibly selecting the most appropriate from a number of
alternative routes. Simultaneous Localization and Mapping
(SLAM) aims at processing data coming from robot sensors
to build a map of the unknown operational environment and,
at the same time, to localize the sensors in the map (also
getting the trajectories of the moving sensors).

Many different types of sensors can be integrated in
SLAM algorithms such as laser range sensors, encoders,
inertial units, GPS, and cameras. In recent years, SLAM
using cameras only has been actively discussed because
cameras are relatively cheap with respect to other sensor
types and their configuration requires the smallest sensor
setup [1]. When the input for SLAM is visual information
only, the technique is specifically referred to as visual SLAM
(vSLAM).

vSLAM algorithms can be grouped according to three
categories, namely feature-based, direct, and RGB-D ap-
proaches. In feature-based methods, geometric information
from images is estimated by extracting a set of feature
observations from the image in input and by computing
the camera position and scene geometry as a function of
these feature observations only [2]. Direct (or featureless)
approaches aims at optimizing the geometry directly on the
image intensities and use photometric consistency over the
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Fig. 1. (a) NVIDIA Jetson TX2 module. (b) The KITTI dataset [5]

whole image as an error measurement. In RGB-D SLAM,
dense depth enables the detection of planes that have no
textures [3].

One of the main challenges in vSLAM is to achieve real-
time processing. Direct and RGB-D methods are computa-
tionally demanding and requires GPU computation to run
in real-time. ORB-SLAM2 [4] is, at the moment, the most
complete feature-based vSLAM system [1]. It works in real-
time on standard CPUs, but not on embedded boards.

In this paper, we present a modified version of ORB-
SLAM2 that runs in real-time on an NVIDIA Jetson TX2
embedded board (see Fig. 1). According to [6], ORB-
SLAM2 is the package that provides the best result in
terms of accuracy among the most popular sparse methods.
However, it is a high-demanding algorithm in terms of CPU
and memory usage [7], thus a careful computational load
distribution is required to obtain real-time performance with
hardware limitations.

The contributions of this work are three-fold:

1) We use a data flow paradigm to obtain a representation
of the original algorithm as a graph, which allows to
subdivide efficiently the computational load between
CPU and GPU.

2) Experimental results demonstrate that, by balancing
CPU/GPU usage, it is possible to achieve real-time
performance on four different sequences of the KITTI
dataset while maintaining good accuracy.

3) We provide on GitHub the complete source code
optimized for real-time use on the NVIDIA Jetson
TX2.



The remainder of the paper is structured as follows. Re-
lated work is discussed in Section II. The proposed method
is presented in Section III. Experimental evaluation is shown
in Section IV. Finally, conclusions are drawn in Section V.

II. BACKGROUND AND RELATED WORK

ORB-SLAM2 [4] is a SLAM system that can work with
data coming from monocular, stereo, and RGB-D cameras.
The system consists of the following three main blocks (see
Fig. 2):

Tracking and localization. This block is in charge of
computing visual features, localizing the robot in the envi-
ronment, and, in case of significant discrepancies between
an already saved map and the input stream, communicating
updated map information to the mapping block. The frames
per second (FPS) that can be computed by the whole system
strongly depends on the performance of this block.

Mapping. It updates the environment map by using the
information (map changes) sent by the localization block. It
is a computational time consuming block and its execution
rate strictly depends on the agent speed. However, consider-
ing the actual agent speed of the KITTI datasets analysed in
this work [5], it does not represent a system bottleneck.

Loop closing. It aims at adjusting the scale drift error
accumulated during the input analysis. When a loop in the
robot pathway is detected, this block updates the mapped
information through a high latency heavy computation, dur-
ing which the first two blocks are suspended. This can
lead the robot to loose tracking and localization information
and, as a consequence, the robot to get temporary lost. The
computation efficiency of this block (running on-demand) is
crucial for the quality of the final results.

The system is organized on three parallel threads, one per
block. The use of parallel threads allows for obtaining real-
time processing on an Intel Core i7 desktop PC with 16GB
RAM [4].

The NVIDIA Jetson TX21 embedded board is an ideal
platform to be mounted on research vehicles having a dual-
core NVIDIA Denver2 plus quad-core ARM Cortex-A57,
8GB RAM, and integrated 256-core Pascal GPU. There are
few examples of SLAM algorithms able to run in real-
time on embedded boards: Abouzahir et al. [8] present a
study of processing times of four different SLAM algorithms
(i.e., Monocular FastSLAM2.0, ORB-SLAM, RatSLAM and
Linear SLAM) under different embedded architectures (i.e.,
iMX6, panda ES, XU4 and TX1), finding that all the consid-
ered SLAM algorithms do not achieve real-time performance
on those architectures. Nguyen et al. [9] report that ORB-
SLAM takes 190 ms per frame on the NVIDIA Jetson TX1
embedded platform. Moreover, low-cost embedded board,
such as Raspberry or Odroid, are not powerful enough for
running ORB-SLAM2. For example, Nitsche et al. [10] were
not able to run ORB-SLAM2 on the Odroid XU4 since

1https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems-dev-kits-modules/
?section=jetsonTX2
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Fig. 2. Main blocks of the ORB-SLAM2 algorithm.

tracking was quickly lost due to high processing time for
each frame.

Instead of running SLAM onboard, it is possible to carry
out the computation on a remote desktop PC and to send the
results to the embedded board on the robot. An example is
the work by Van Opdenbosch et al. [11]. They present an
approach for remote vSLAM where local binary features are
extracted at the robot, compressed and sent over a network
to a centralized processing node. However, remote vSLAM
is not usable in the absence of a reliable network, which is
often the case in field deployments.

Giubilato et al. [7] analyse the challenges in implementing
SLAM systems on embedded boards and highlight that most
of the existing reviews and analysis of SLAM systems does
not take into account the consequences of the implementation
on an embedded computing platform. In particular, they
compare the performance of ORB-SLAM2, SPTAM, and
RTAB-MAP on a Jetson TX2 finding that ORB-SLAM2
shows a great robustness in challenging scenarios. However,
they were not able to run ORB-SLAM2 in real time on
the TX2 board. Vempati et al. [12] describe a system for
autonomous spray painting using an unmanned aerial vehicle
(UAV) equipped with a Jetson TX2. They use a depth-
based vSLAM method achieving an onboard computation
at 60 FPS. However, they do not provide a comparison of
their method with other approaches, thus it is not possible
to evaluate if their approach can be used to applications
different from the considered spray painting use-case.

In this paper, we describe a method for optimizing the
CPU/GPU computational load to achieve real-time perfor-
mance for ORB-SLAM2 on the TX2 board. In particular,
we provide a method for fully exploiting the potentiality of
recent embedding boards using an heterogeneous (i.e., CPU
+ GPU) implementation of ORB-SLAM2.

III. METHODS

We started the embedding process from the open source
ORB-SLAM2 implementation proposed in [4], which orig-
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inally provides two levels of parallelism. The first level is
given by the three main algorithm blocks (see Fig. 2), which
are implemented to be run as parallel PThreads on shared-
memory multi-core CPUs. The second level is given by
the automatic parallel implementation (i.e., thorugh OpenMP
directives) of the bundle adjustment sub-block, which is part
both of the local mapping and loop closing blocks. This
allows the parallel computation of such a long latency task
on multi-core CPUs. No blocks or sub-blocks are considered
for parallel execution on GPU in the original code (see Fig.
3a).

To fully exploit the heterogeneous nature of the tar-
get board (i.e., multi-core CPUs combined with many-core
GPU), we added two further levels of parallelism. The first
is given by the parallel implementation for GPU of a set
of tracking sub-blocks (see Fig. 4). The second is given
by the implementation of a 8-stage pipeline of such sub-
blocks. We focused on the feature extraction block as, for
the datasets analysed in this work (i.e., KITTI [5]), it is the
most important bottleneck that characterizes the processing
rate in terms of supported FPS.

To do that, we first re-designed the model of the fea-
ture extraction block as a direct acyclic graph (DAG) by
adopting the OpenVX standard2 as shown in Fig. 4. The
transformation of the original implementation, which was
originally conceived for CPUs only, into a CPU/GPU parallel
execution requires a control on the communication between
code running on the CPUs and on the GPU. In particular, the
mapping phase is critical, requiring a temporal synchroniza-
tion between the blocks of the algorithm to be successful.

NVIDIA provides VisionWorks, which extends the
OpenVX standard through efficient implementations of em-
bedded vision kernels and runtime system optimized for
CUDA-capable GPUs. Nevertheless, such a toolkit has some

2https://www.khronos/openvx

Pyramid 
level

FAST 
corner

Grid 
optimization

Octree 
distribution

Gaussian 
blur

Orientation

Compute 
ORB 

descriptor

Scale 
keypoints
by level

Image
Keypoints Pruned 

keypoints

KeypointsBlurried
image

Keypoints

ORB 
descriptor

Scaled 
keypoints

Source 
image

Feature extraction

CPU impl.

CPU/GPU 
impl.

Fig. 4. DAG of the feature extraction block and the corresponding sub-
block implementations (GPU vs. CPU).

limitations, which do not allow for the target multi-level
parallelism. In particular, the VisionWorks runtime system,
which manages synchronization and execution order among
the DAG sub-blocks, implicitly sequentializes the tracking
and localization block execution (see Fig. 3b). This is due
to the fact that only the tracking sub-block can be mod-
eled as DAG and, although the rest of the system can be
integrated as C/C++/OpenCV code, their communication and
synchronization is solved through a mutex-based mechanism
(see Fig. 3). Such a sequentialization leads to the idle state
of the GPU whenever the localization block is running. In
addition, VisionWorks does not support pipelined execution
among DAG sub-blocks.

Since VisionWorks is not open source, we re-implemented
and made open source both an advanced runtime system
targeting multi-level parallelism and a library of accelerated
computer vision primitives compliant to OpenVX for the
Jetson TX2 board (see Section IV for information about our
code on GitHub).

A. The Heterogeneous Implementation of ORB-SLAM

Fig. 5 shows the overview of the proposed software
approach mapped into the Jetson TX2 architecture. To fully
exploit the potential of the TX2 board, we combined dif-
ferent languages and parallel programming environments. In
particular, we implemented control parts in C/C++, concur-
rent blocks on CPU cores through Pthreads, code chunks
with parallelization directives in OpenMP, kernels for GPU
computing in CUDA, while primitive-based parallelization of
data-flow routines in OpenVX. We adopted OpenCV to im-
plement the I/O communication protocols through standard
data-structures and APIs. This allows the developed ORB-
SLAM application to be portable and easy to be plugged into
any other application that uses OpenCV.

The Jetson TX2 board is a shared-memory architecture
that combines two CPU clusters with two symmetric GPU
multiprocessors. The CPUs and the GPU share an unified
memory space.

The stack layer involved in the concurrent execution of
each software module consists of two main parts:

• User-controlled stack. It is a programmable stack
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scheduling layers of an embedded vision application developed with the
proposed method on the NVIDIA Jetson TX2 board.

that allows processes running on different CPUs
(e.g., C/C++ processes, OpenCV APIs, Pthreads, and
OpenMP processes) to communicate through shared
memory.

• Private stack. It is generated and managed by the
OpenVX runtime system, not programmable by the
user, and it allows the communication among OpenVX
graph nodes running on different CPUs or on the GPU.

The top of Fig. 5 shows the user-controlled and private
stacks in our architecture.

The Linux Ubuntu operating system natively running on
the NVIDIA Jetson maps the tasks related to the user-
controlled stack to the CPU cores. The proposed runtime
system maps the OpenVX tasks to the CPU cores or to GPU
multiprocessors.

The two parts are associated into a single unified schedul-
ing engine in order to:

1) Enable the full concurrency of the two parts;
2) Avoid sequentialization of the two sets of tasks;
3) Avoid synchronization overhead.
In this way, the operating system can schedule all the tasks

mapped to the CPU cores (of both stack parts), while the
OpenVX runtime system can control the GPU task schedul-
ing, the CPU-to-GPU communication, and the CPU-to-GPU
synchronization (i.e., GPU stream and kernel engine). To do
that, we have developed a C/C++-OpenVX template-based
communication wrapper, which allows for memory accesses
to the OpenVX data structures on the private stack and for
full control of the OpenVX context execution by the C/C++
environment.

Fig. 6 shows the wrapper and its integration in the system.
The OpenVX initialization phase generates the graph context
and allocates the private data structures. Such allocation re-
turns opaque pointers to the allocated memory segments, i.e.,
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Fig. 6. The communication wrapper and its integration in the system.

pointers to private memory areas which layout is unknown
to the programmer.

OpenVX read and write primitives
(Write-Read on vx Datastructure() in Fig.
6) have been defined to access the private data structures
through the opaque pointers. The primitives are invoked
from the C/C++ context and, through the communication
wrapper APIs, they set a mutex mechanism to safely
access the OpenVX data structures. The same mutex is
shared with the OpenVX runtime system for the overall
graph processing (vxProcessGraph() in Fig. 6). As
a consequence, the mechanism guarantees synchronization
during the accesses to the shared data structures between the
OpenVX and C/C++ contexts when running concurrently
on multicores. It is worth noting that the invocation of the
overall graph process, which is performed in the C/C++
environment, starts the execution of the data-flow oriented
OpenVX code. As shown in Fig. 6, such an invocation can
be performed concurrently by different C/C++ threads, and
each invocation involves a mapping and scheduling of the
corresponding graph instance. The proposed communication
wrapper and mutex system allow for synchronization
among the different concurrent OpenVX graph executions
and the C/C++ calling environments. Standard mutex
mechanisms are adopted to synchronize all the other C/C++
based contexts belonging to the user-controlled stack, when
accessing shared data structures. In conclusion, the proposed
mutex-based communication wrapper allows for multi-level
parallel execution of the application. In particular, it is
crucial for synchronization among sub-blocks in their
pipelined execution, as well as the simultaneous application
of the different levels of parallelism.

IV. EXPERIMENTAL RESULTS
To evaluate the results of our modified version of ORB-

SLAM2, we used four sequences from the KITTI dataset
(see Fig. 7) as done in the original paper by Mur-Artal and
Tardos [4].

The KITTI dataset [5] contains sequences of 1,242×375
images recorded at 10 FPS from a car in urban and highway



Fig. 7. Samples from the four sequences of the KITTI dataset used for
evaluation. (a) Sequence 03. (b) Sequence 04. (c) Sequence 05. (d) Sequence
06.

environments (see Fig. 7). We consider four sequences,
namely 03, 04, 05, 06. Sequences 03 and 04 do not contain
loops, while sequences 05 and 06 contain different numbers
of loops. Public ground-truth is available for the considered
sequences. We implemented and evaluated three different
versions of ORB-SLAM2, in which the tracking block ex-
ploits (see Section III-A):

1) CPU + pipelining
2) CPU + GPU
3) CPU + GPU + pipelining

A. Runtime Performance

Table I shows the performance of the original ORB-
SLAM2 code3 and our three different versions (publicly
available on GitHub4) running on the Jetson TX2 board.
The results have been generated using the same settings for
comparing the different versions and by repeating five times
the execution of each considered sequence.

The results in Table I highlight the different performance
achieved by the original code and the three different versions
in terms of supported FPS. The original code run on such an
embedded and low-power board does not support real-time
execution, by achieving in average 7 FPS. Both pipelining
and heterogeneous CPU+GPU execution allow improving
the performance by exploiting different kinds of parallelism.
The CPU+GPU+pipelining version provides the best results
thanks to the multi-level (combined) parallelism. It supports
real-time executions with frame rates above 25 FPS.

B. Qualitative and Quantitative Evaluation and Metrics

Fig. 8 shows the qualitative results of our best implemen-
tation (i.e., CPU+GPU+pipelining). For the sake of space,

3https://github.com/raulmur/ORB_SLAM2
4https://github.com/xaldyz/dataflow-orbslam

we report only some parts of the analysed KITT sequences.
For the quantitative evaluation of the result quality, we

considered three different metrics: the root mean squared
error for the absolute translation (RMSE ATE), the root
mean squared error for the average relative pose error (RMSE
RPE) [13] and the percentage of the reconstructed map.
Measuring the absolute distances between the estimated and
the ground truth trajectory using ATE provides a measure of
the global consistency of the estimated trajectory. Moreover,
ATE has an intuitive visualization that facilitates visual
inspection (see Fig. 8). The RPE measure allows us to
evaluate the local accuracy of the SLAM system, i.e., to
measure the error related to two consecutive poses [13].
The percentage of reconstructed map is calculated from
an initialization step. ATE and RPE are considered on the
portion of the reconstructed map.

Table II shows the quantitative results. With the original
implementation, the processing speed (around 7 FPS) fails
to meet the 10 FPS requirement of the dataset. As a conse-
quence, only a partial reconstruction is available. Since the
metrics are defined only for the reconstructed portion of the
map, the low map coverage reconstruction leads to a very low
(misleading) absolute error. This behaviour is more evident
in the ATE, while the RPE is comparable in all versions.
The analysis underlines a slight quality degradation of the
results provided by the implementations for GPU when run
above 28 FPS. This is due to the different implementation
and synchronization of the feature extraction primitives with
respect to the original sequential version. In general, by
considering both the performance and the quality of the
results, the CPU+GPU+pipelining implementation provides
the highest FPS, it gets lost sensibly less, and provides a
negligible degradation of results w.r.t. the original sequential
implementation.

V. CONCLUSIONS

Visual SLAM systems can achieve real-time performance
on commercial desktop PCs. However, running vSLAM
methods on embedded boards in real-time requires a mod-
ification of the original approaches to fully exploit the
potential of the recent embedded boards equipped with
GPU accelerators. In this paper, we presented a modified
version of the ORB-SLAM2 algorithm that can achieve
real-time performance on the NVIDIA Jetson TX2 board.
Experimental results, conducted on three different publicly
available datasets, demonstrate that:

• The proposed implementation is up to 4.5 times faster
than the original code when running on the TX2 board;

• The accuracy of the modified version is comparable
with the results generated by the original code.

We have released the source code of our system on
GitHub, with examples and instructions so that it can be
easily used by other researchers. As future work, we intend
to mount a Jetson TX2 board on a mobile robot to test the
use of our ORB-SLAM2 implementation combined to other
computer vision applications for navigation tasks.



Fig. 8. Qualitative evaluation of the proposed ORB-SLAM application version CPU+GPU+pipelining on some parts of KITTI sequence 03 (a), sequence
04 (b), sequence 05 (c) and sequence 06 (d).

TABLE I
RUNTIME PERFORMANCE (FPS)

Sequence 03 04 05 06
Resolution 1242×375 1226×370 1226×370 1226×370
Input FPS 10 10 10 10

version
CPU CPU+ CPU+ CPU+ CPU CPU+ CPU+ CPU+ CPU CPU+ CPU+ CPU+ CPU CPU+ CPU+ CPU+

pipelining GPU GPU+ pipelining GPU GPU+ pipelining GPU GPU+ pipelining GPU GPU+
pipelining pipelining pipelining pipelining

FPS 6.99 15.23 17.90 27.79 7.47 15.96 20.70 30.33 6.54 15.56 18.52 27.97 6.68 16.03 19.66 32.30

TABLE II
QUANTITATIVE RESULTS

Version Original CPU + pipelining CPU + GPU CPU + GPU + pipelining
Sequence ATE(m) RPE(m) % cov. ATE(m) RPE(m) % cov. ATE(m) RPE(m) % cov. ATE(m) RPE(m) % cov.

03 0.73 0.15 70.87 1.33 0.09 99.90 1.15 0.09 99.92 1.13 0.08 99.97
04 0.82 0.46 15.01 1.31 0.11 99.92 0.39 0.26 19.63 0.37 0.11 99.72
05 6.58 0.76 23.09 7.44 0.82 82.99 10.54 1.05 91.03 13.88 1.18 95.58
06 1.29 0.29 27.37 16.04 1.11 89.98 15.46 0.99 77.36 16.30 1.14 91.75
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