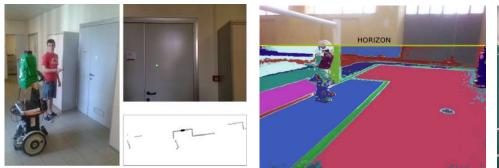


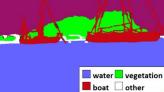
UNIVERSITÀ DEGLI STUDI DELLA BASILICATA

Corso di Visione e Percezione

Feature Matching

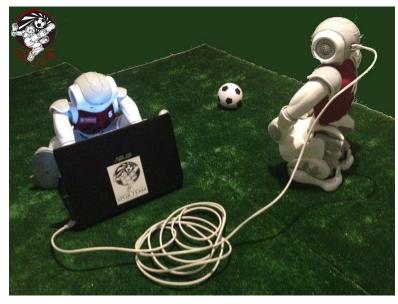


Docente Domenico D. Bloisi



Domenico Daniele Bloisi

- **Ricercatore RTD B** Dipartimento di Matematica, Informatica Sensors (1) GPS La Engine control ed Economia Università degli studi della Basilicata http://web.unibas.it/bloisi
- SPQR Robot Soccer Team Dipartimento di Informatica, Automatica e Gestionale Università degli studi di Roma "La Sapienza" http://spqr.diag.uniroma1.it



Informazioni sul corso

- Home page del corso <u>http://web.unibas.it/bloisi/corsi/visione-e-percezione.html</u>
- Docente: Domenico Daniele Bloisi
- Periodo: Il semestre marzo 2021 giugno 2021

Martedì 17:00-19:00 (Aula COPERNICO) Mercoledì 8:30-10:30 (Aula COPERNICO)

Codice corso Google Classroom: https://classroom.google.com/c/ NjI2MjA4MzgzNDFa?cjc=xgolays

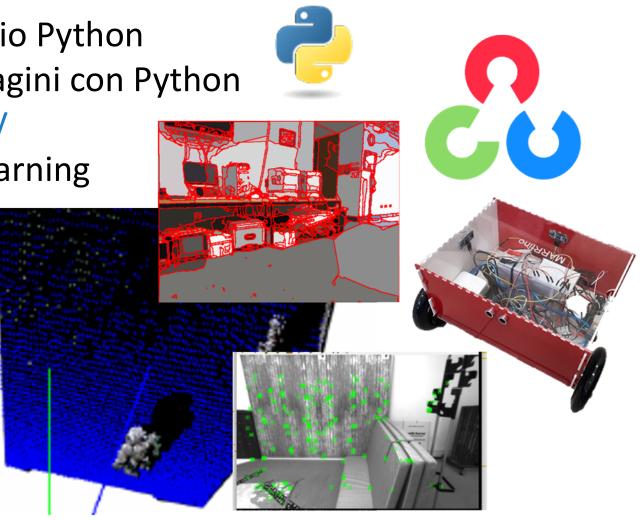
Ricevimento

• Su appuntamento tramite Google Meet

Per prenotare un appuntamento inviare una email a <u>domenico.bloisi@unibas.it</u>

Programma – Visione e Percezione

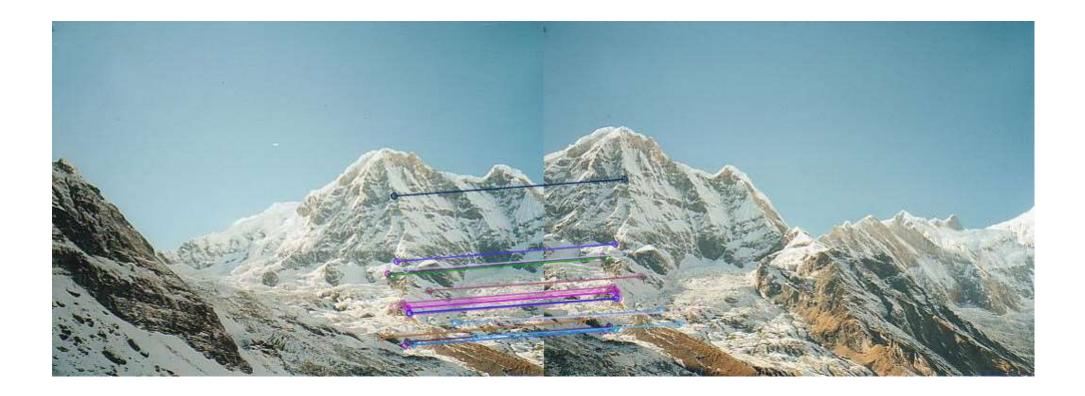
- Introduzione al linguaggio Python
- Elaborazione delle immagini con Python
- Percezione 2D OpenCV
- Introduzione al Deep Learning
- ROS
- Il paradigma publisher and subscriber
- Simulatori
- Percezione 3D PCL



Riferimenti

- Queste slide sono adattate da Noah Snavely - CS5670: Computer Vision "Lecture 5: Feature descriptors and matching" "Lecture 9: RANSAC"
- I contenuti fanno riferimento ai capitoli 3 e 4 del libro "Computer Vision: Algorithms and Applications" di Richard Szeliski, disponibile al seguente indirizzo <u>http://szeliski.org/Book/</u>

Problem: Feature matching



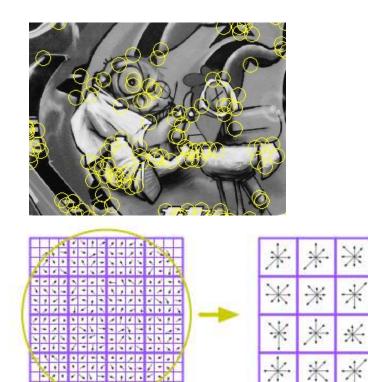
Recap

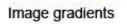
Keypoint detection: repeatable and distinctive

- Corners, blobs, stable regions
- Harris

Descriptors: robust and selective

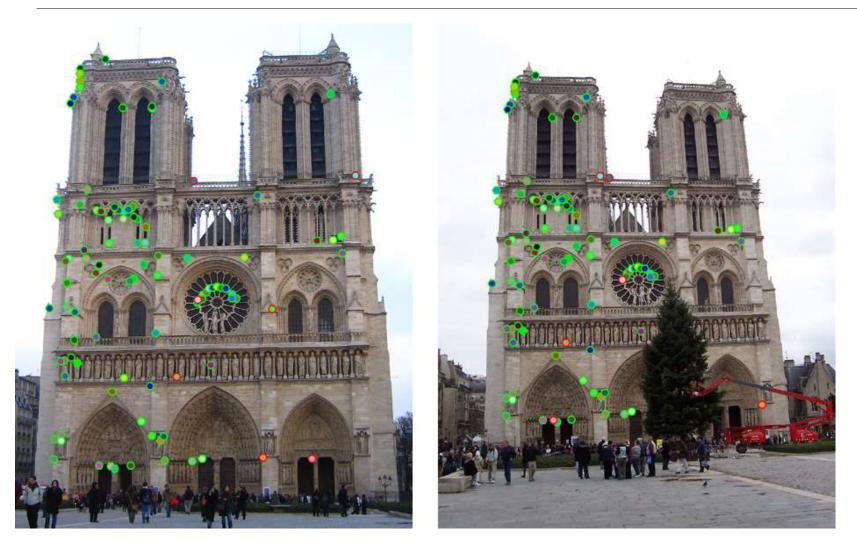
- spatial histograms of orientation
- SIFT and variants are typically good for stitching and recognition





Keypoint descriptor

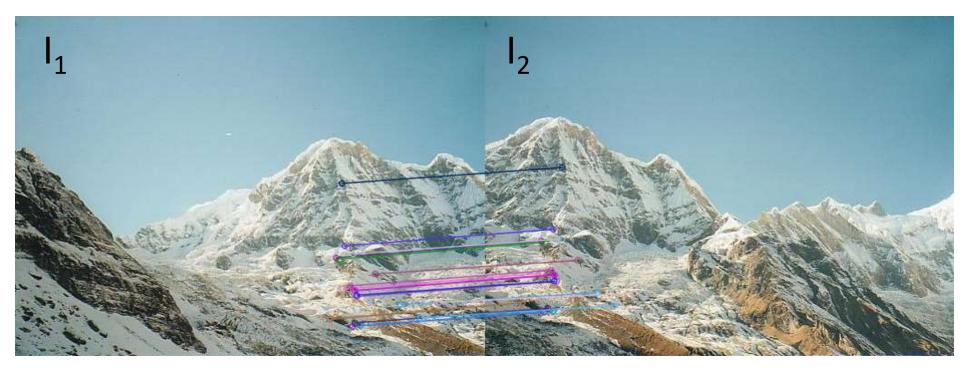
Which features match?



Features matching

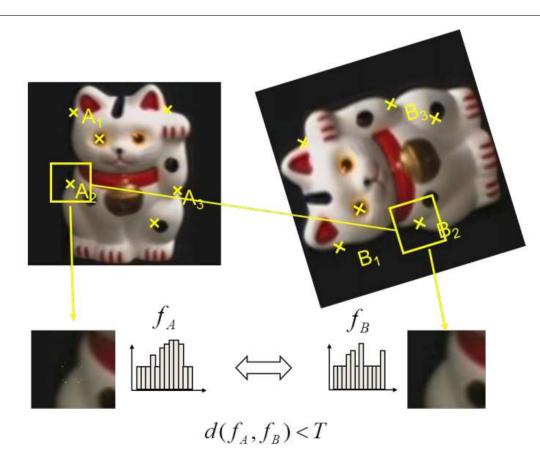
Given a feature in I_1 , how to find the best match in I_2 ?

- 1. Define distance function that compares two descriptors
- 2. Test all the features in I_2 , find the one with min distance



Overview of point feature matching

- 1. Detect a set of distinct feature points
- 2. Define a patch around each point
- 3. Extract and normalize the patch
- 4. Compute a local descriptor
- 5. Match local descriptors



Source: Trym Vegard Haavardsholm

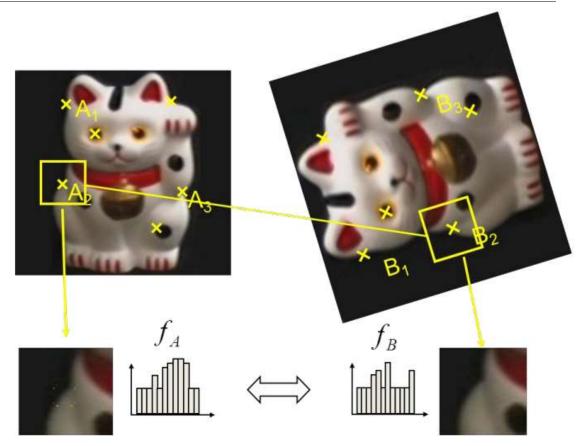
Distance between descriptors

- L₁ distance (SAD):

$$d(f_a, f_b) = \sum \left| f_a - f_b \right|$$

- L_2 distance (SSD): $d(f_a, f_b) = \sum (f_a - f_b)^2$
- Hamming distance:

$$d(f_a, f_b) = \sum \text{XOR}(f_a, f_b)$$



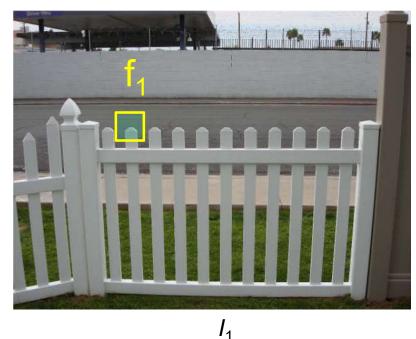
 $d(f_A, f_B) < T$

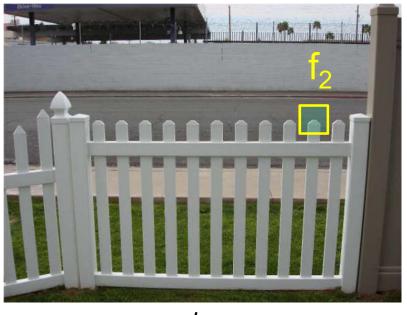
Source: Trym Vegard Haavardsholm

Features distance: SSD

How to define the difference between two features f_1, f_2 ?

- Simple approach: L₂ distance, ||f₁ f₂ ||
 i.e., sum of square differences (SSD) between entries of the two descriptors
- can give small distances for ambiguous (incorrect) matches i.e., does not provide a way to discard ambiguous (bad) matches

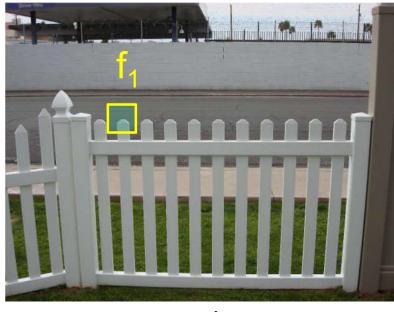


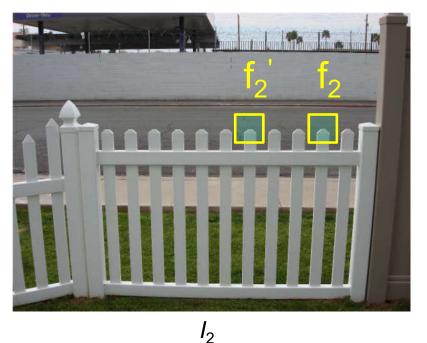


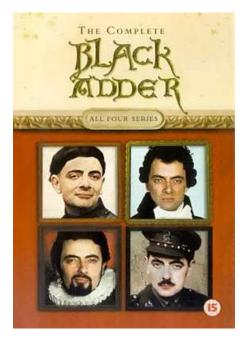
Features distance: Ratio of SSDs

How to define the difference between two features f_1, f_2 ?

- Better approach: ratio distance = SSD(f₁, f₂) / SSD(f₁, f₂')
 - $f_{\rm 2}$ is best SSD match to $f_{\rm 1}$ in $I_{\rm 2}$
 - $f_2^{\ \prime}$ is 2nd best SSD match to $f_1^{\ }$ in $I_2^{\ }$
 - An ambiguous/bad match will have ratio close to 1
 - Look for unique matches which have low ratio



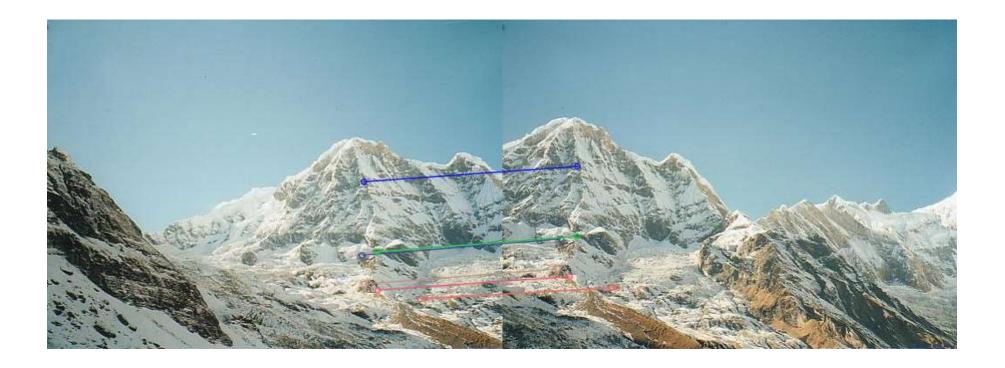


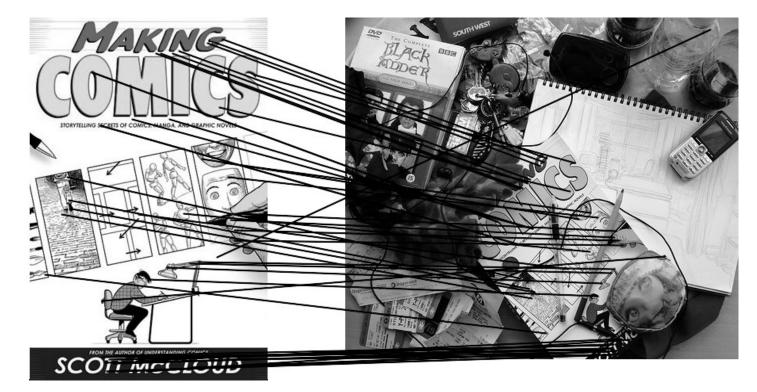


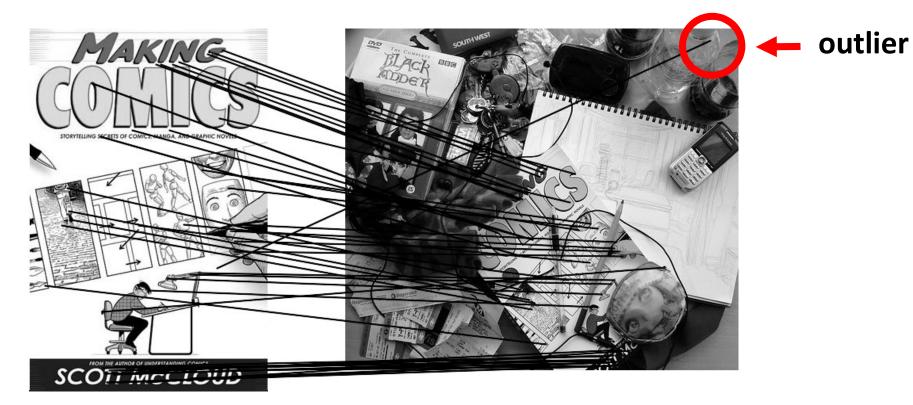
Example in Colab: ratio test

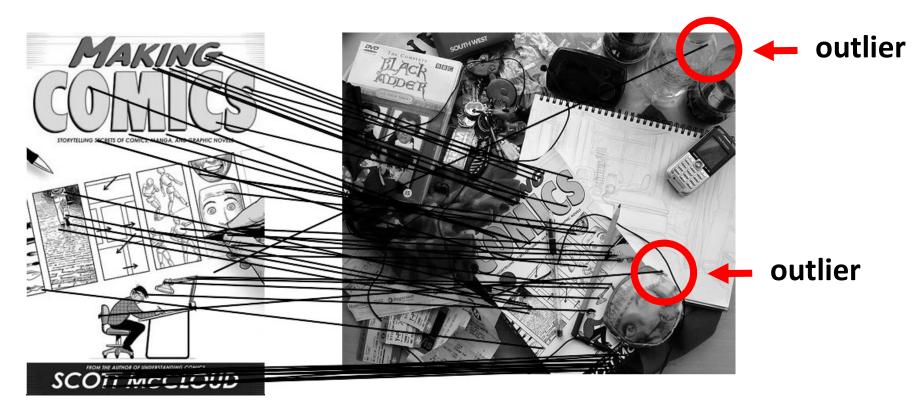
```
orb = cv.ORB create()
kp 1, des 1 = orb.detectAndCompute(img 1, None)
kp 2, des 2 = orb.detectAndCompute(img 2, None)
bf = cv.BFMatcher()
                                           BFMatcher.knnMatch() to get k best matches.
matches = bf.knnMatch(des 1, des 2, k=2)
                                           In this example, we will take k=2 so that we
# Apply ratio test
                                           can apply ratio test
good = []
for m.n in matches:
   if m.distance < 0.7*n.distance:
       good.append([m])
img 3 = cv.drawMatchesKnn(img 1, kp_1, img_2, kp_2, good[:20], None, flags=2)
img 3 rgb = cv.cvtColor(img 3, cv.COLOR BGR2RGB)
plt.axis('off')
plt.imshow(img 3 rgb)
plt.show()
cv.imwrite('matching.png', img 3)
```

Example in Colab: ratio test results







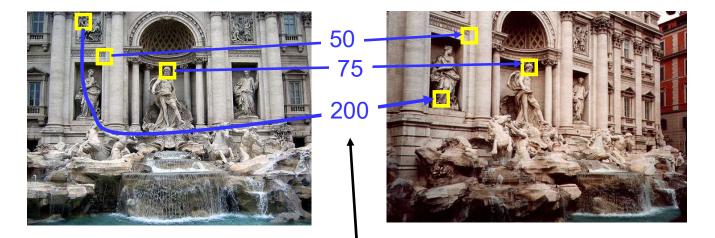


Evaluating the results

How can we measure the performance of a feature matcher?

Evaluating the results

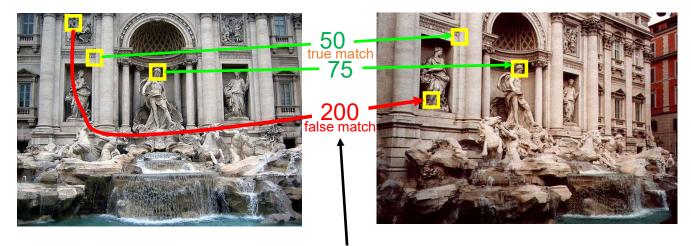
How can we measure the performance of a feature matcher?



feature distance (e.g., SSD)

True/false positives

How can we measure the performance of a feature matcher?



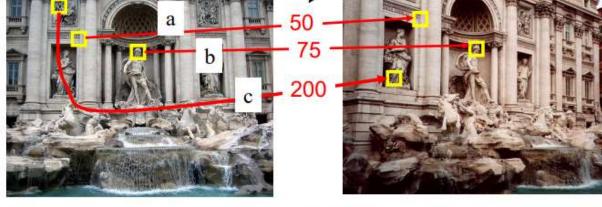
feature distance (e.g., SSD)

The distance threshold affects performance

- True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
- False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?

Large threshold T

SSD feature distance



Decision rule: Accept match if SSD < T

Example: Large T

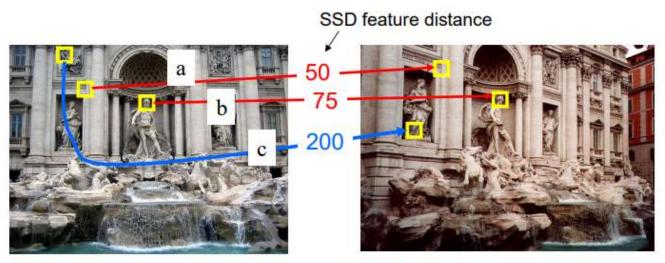
 $T = 250 \Rightarrow a, b, c are all accepted as matches$

a and b are true matches ("true positives")

- they are actually matches
- c is a false match ("false positive")
 - actually not a match

Maximize TP

Small threshold T



Decision rule: Accept match if SSD < T

Example: Smaller T

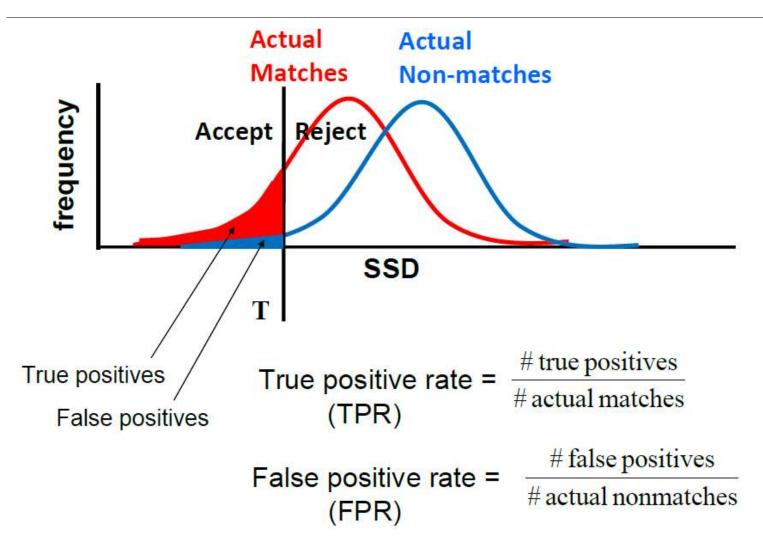
 $T = 100 \Rightarrow$ only a and b are accepted as matches

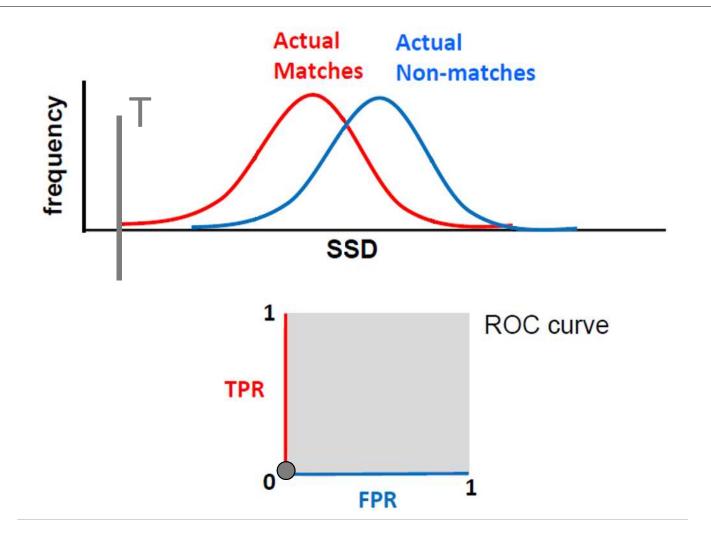
a and b are true matches ("true positives")

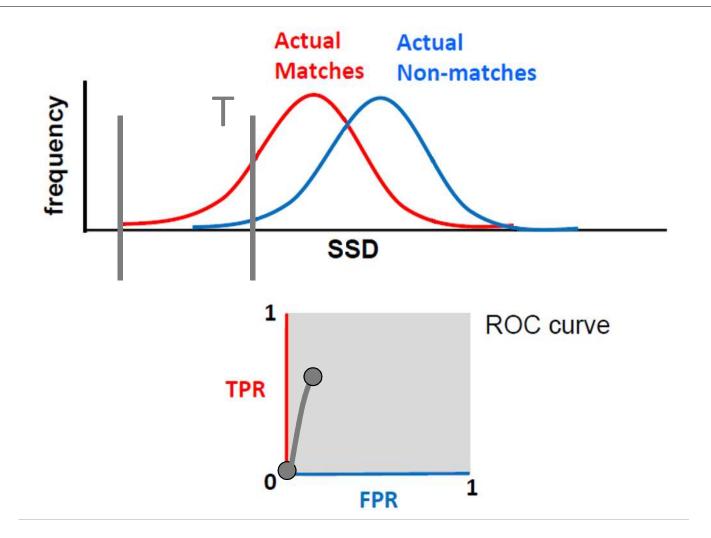
c is no longer a "false positive" (it is a "true negative")

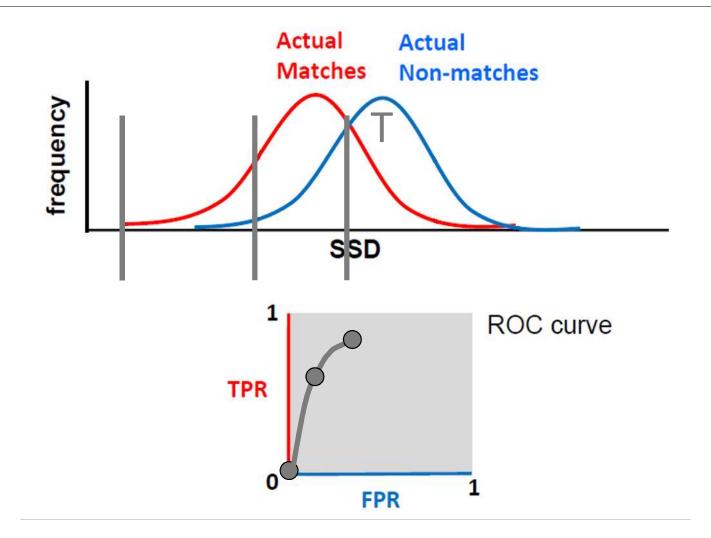
Minimize FP

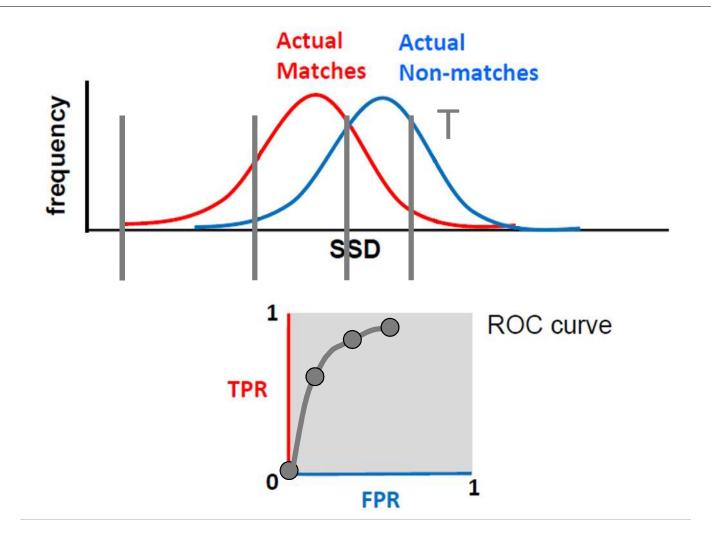
True positives and false positives

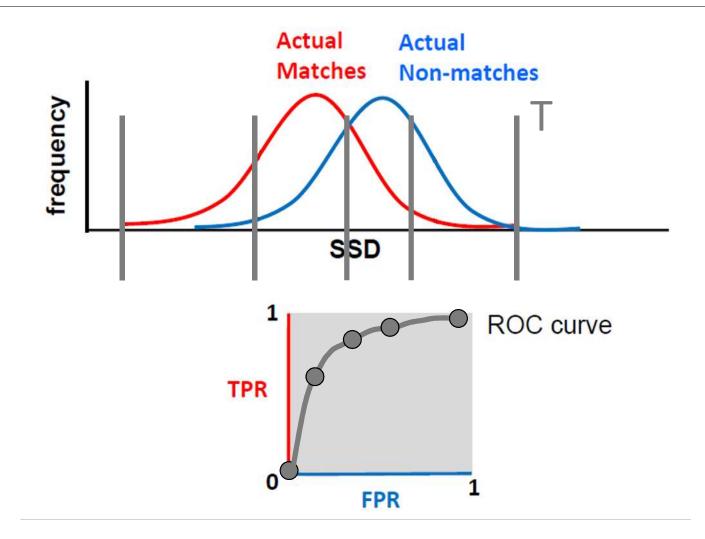




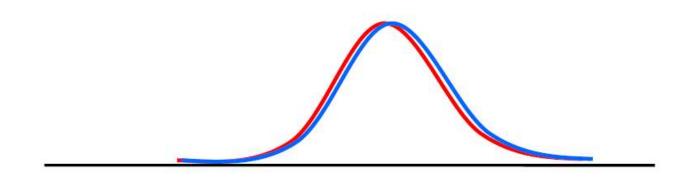


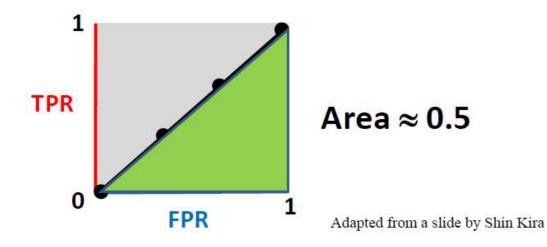




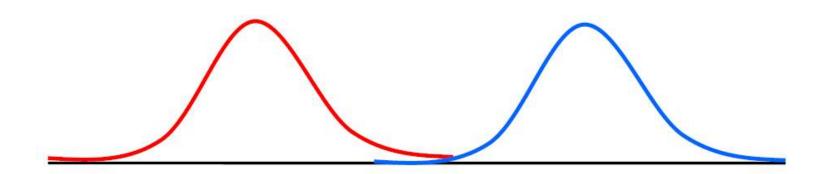


If the features selected were bad...





If the features selected were good...



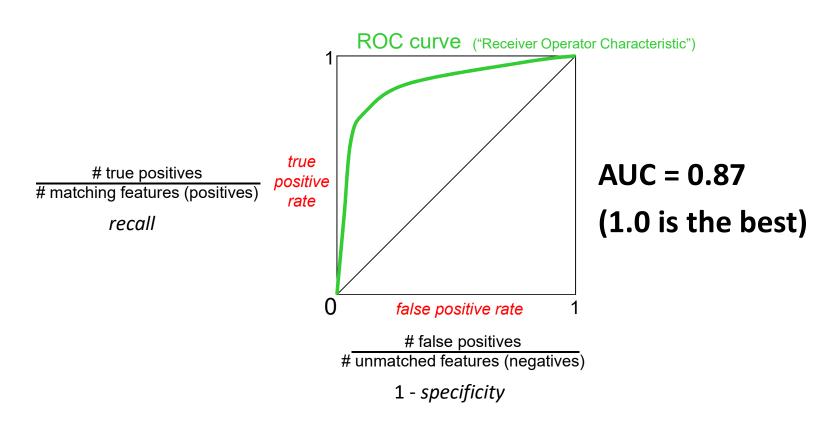


Area ≈ 1.0

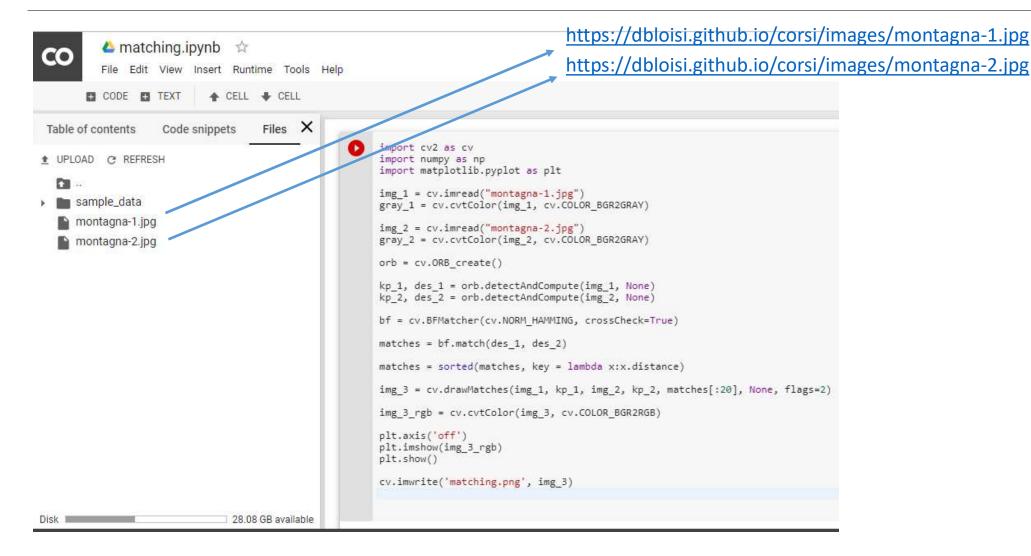
Adapted from a slide by Shin Kira

Area under the curve

Single number: Area Under the Curve (AUC)



Feature matching: example using ORB



ORB


```
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
img_1 = cv.imread("montagna-1.jpg")
gray_1 = cv.cvtColor(img_1, cv.COLOR_BGR2GRAY)
img_2 = cv.imread("montagna-2.jpg")
gray_2 = cv.cvtColor(img_2, cv.COLOR_BGR2GRAY)
orb = cv.ORB_create()
kp_1, des_1 = orb.detectAndCompute(img_1, None)
kp_2, des_2 = orb.detectAndCompute(img_2, None)
```

Brute force matching

Brute-Force matcher is simple. It takes the descriptor of one feature in first set and is matched with all other features in second set using some distance calculation. And the closest one is returned.

Hamming distance:

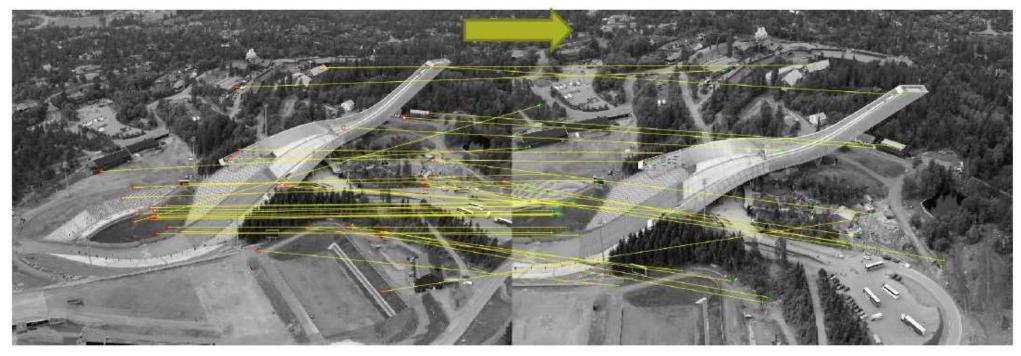
$$d(f_a, f_b) = \sum XOR(f_a, f_b)$$

bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)
matches = bf.match(des 1, des 2)

Cross check test

- Choose matches (f_a, f_b) so that
 - f_b is the best match for f_a in I_b
 - And f_a is the best match for f_b in I_a

Alternative to ratio test

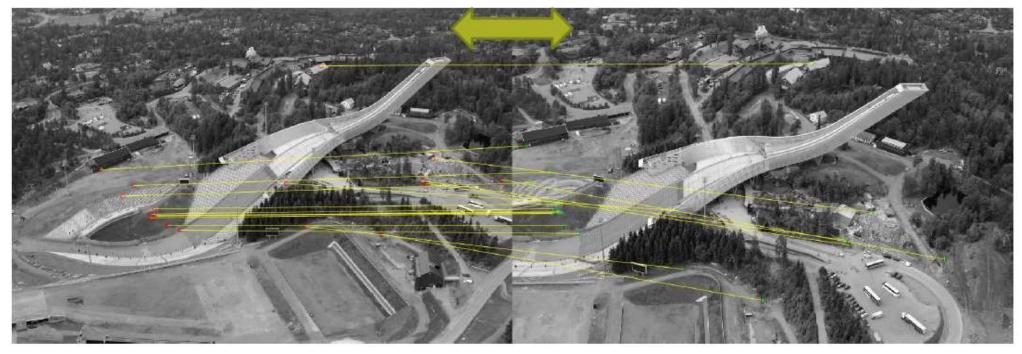


https://www.uio.no/studier/emner/matnat/its/UNIK4690/v17/forelesninger/lecture 4 2 feature matching.pdf

Cross check test

- Choose matches (f_a, f_b) so that
 - f_b is the best match for f_a in I_b
 - And f_a is the best match for f_b in I_a

Alternative to ratio test



https://www.uio.no/studier/emner/matnat/its/UNIK4690/v17/forelesninger/lecture 4 2 feature matching.pdf

Sorting

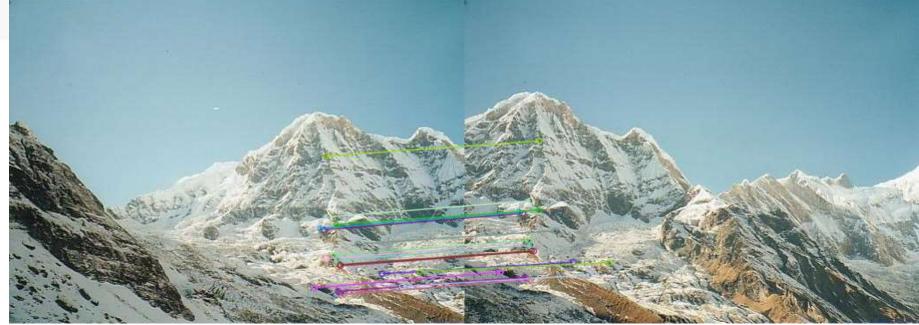
Matches are sorted in ascending order of their distances so that best matches (with low distance) come to front.

```
bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)
matches = bf.match(des_1, des_2)
matches = sorted(matches, key = lambda x:x.distance)
```

In Python, le funzioni lambda, dette anche funzioni anonime, sono funzioni che vengono usate per un periodo di tempo limitato e sono legate a funzioni di più alto livello

Result

```
img_3 = cv.drawMatches(img_1, kp_1, img_2, kp_2, matches[:20], None, flags=2)
img_3_rgb = cv.cvtColor(img_3, cv.COLOR_BGR2RGB)
plt.axis('off')
plt.imshow(img_3_rgb)
plt.show()
cv.imwrite('matching.png', img_3)
```



SIFT Example

Univ4.jpg

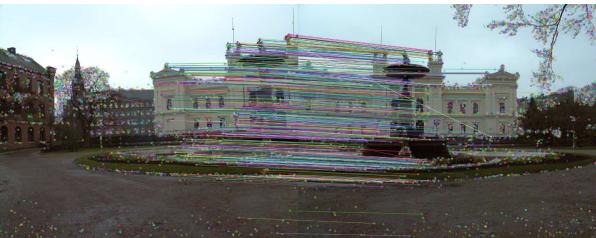
Univ3.jpg

http://programmingcomputervision.com/

SIFT Example

https://dbloisi.github.io/corsi/lezionivep/sift.ipynb

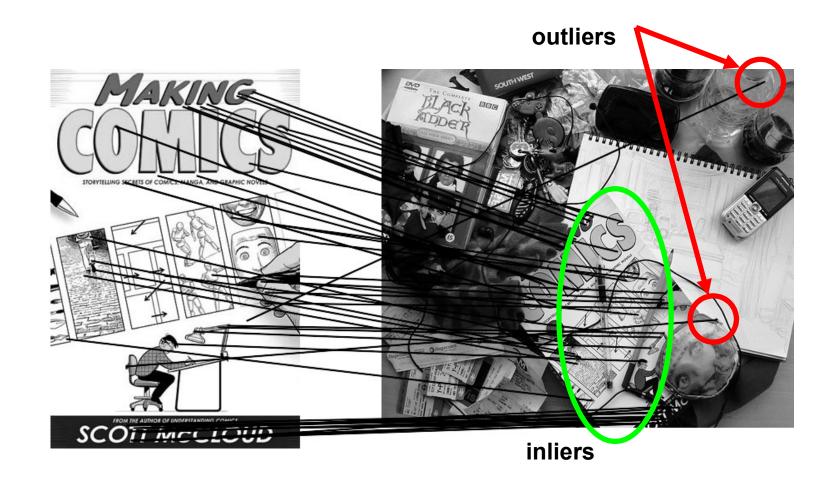
SIFT vs ORB



https://dbloisi.github.io/corsi/lezionivep/sift.ipynb

https://dbloisi.github.io/corsi/lezionivep/orb.ipynb

Excluding outliers

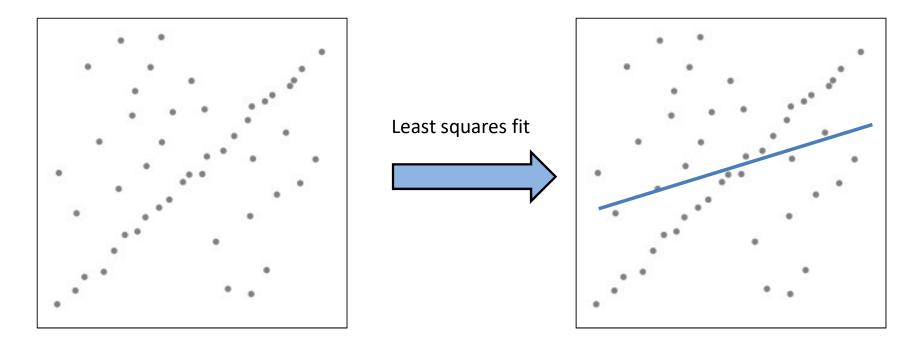


Robustness

Problem: Fit a line to these datapoints

Robustness

Problem: Fit a line to these datapoints



```
import numpy as np
 \mathbb{Z}
       import ev2 as ev
 3
       import math
 4
 0.01
       # Read image
       im = cv.imread("punti.png", cv.IMREAD GRAYSCALE)
 7
 8
       # Setup SimpleBlobDetector parameters.
 19
       params = cv.SimpleBlobDetector Params()
10
11
       # Change thresholds
```

```
params.minThreshold = 10;
params.maxThreshold = 200;
```

12

13 14

15

16

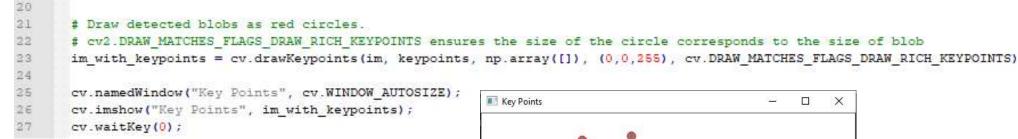
17

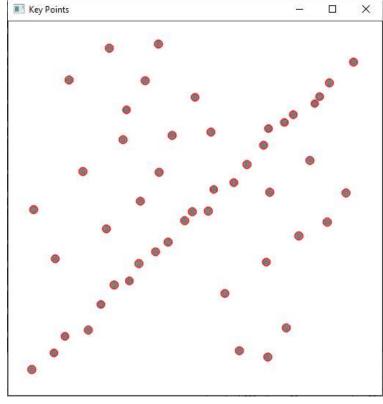
19

```
punti.png
```

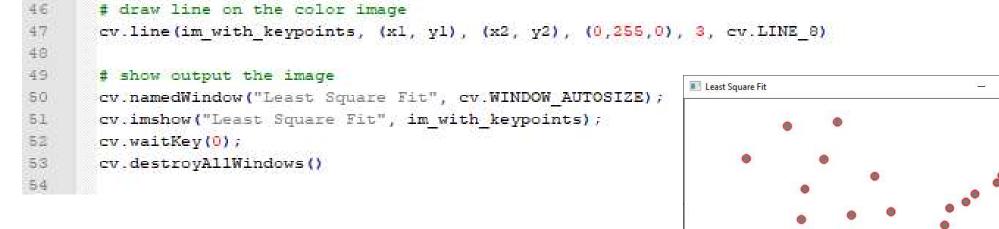
```
# Set up the detector with default parameters.
detector = cv.SimpleBlobDetector_create(params)
```

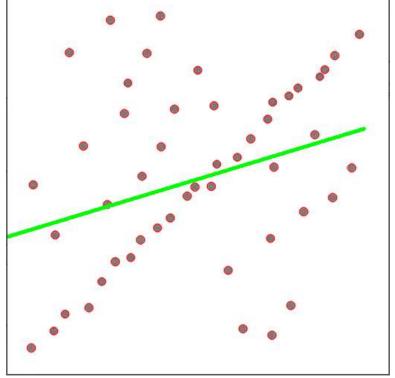
```
# Detect blobs.
keypoints = detector.detect(im)
```



```
28
     v = [1]
29
    for elem in keypoints:
30
31
          #print(elem.pt[0])
32
          v.append([elem.pt[0],elem.pt[1]])
33
      points = np.array(v)
34
35
      v = points[:,0]
36
      x = points[:, 1]
37
38
      m, c = np.polyfit(x, y, 1)  # calculate least square fit line
39
40
      # calculate two cordinates (x1, y1), (x2, y2) on the line
41
      angle = np.arctan(m)
      x1, y1, length = 0, int(c), 500
42
      x2 = int(round(math.ceil(xl + length * np.cos(angle)),0))
43
44
      y2 = int(round(math.ceil(y1 + length * np.sin(angle)),0))
```

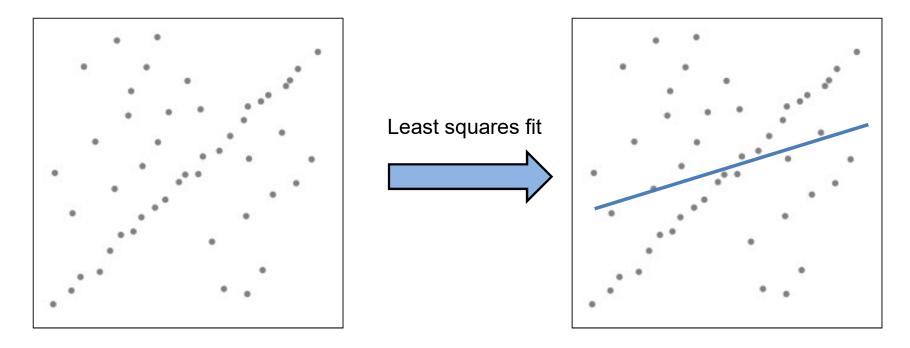





X

Robustness

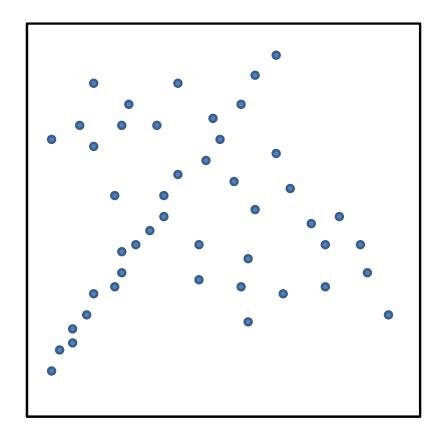
Problem: Fit a line to these datapoints

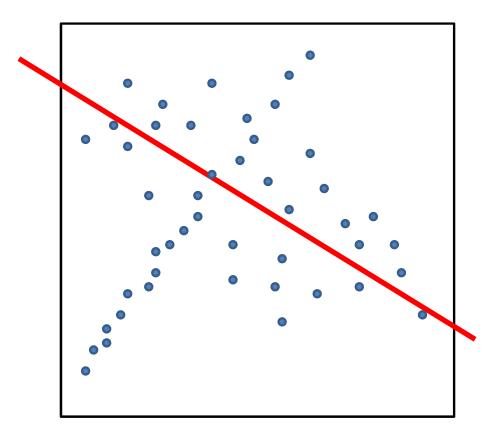


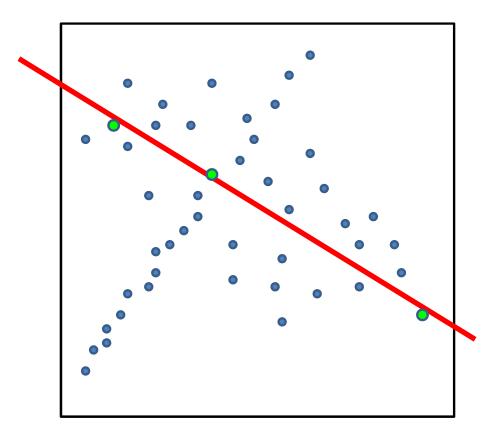
How can we fix this?

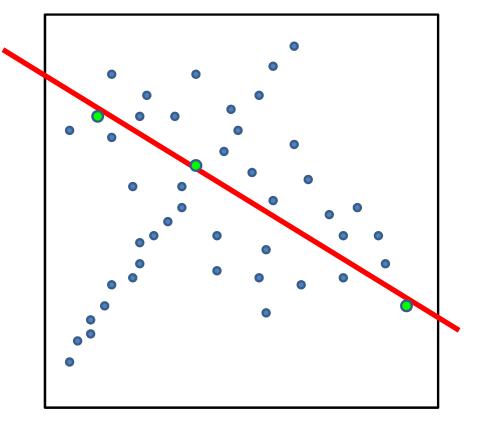
Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the **inliers** to that line
- For all possible lines, select the one with the largest number of inliers

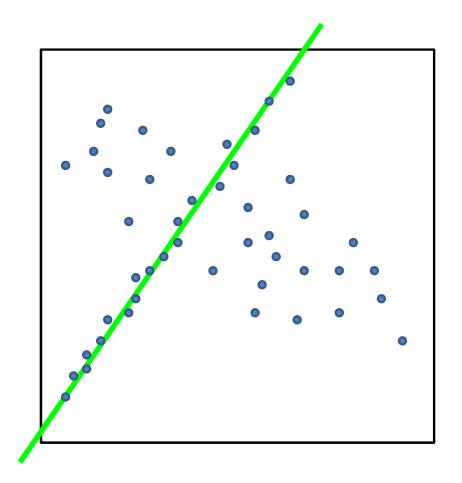


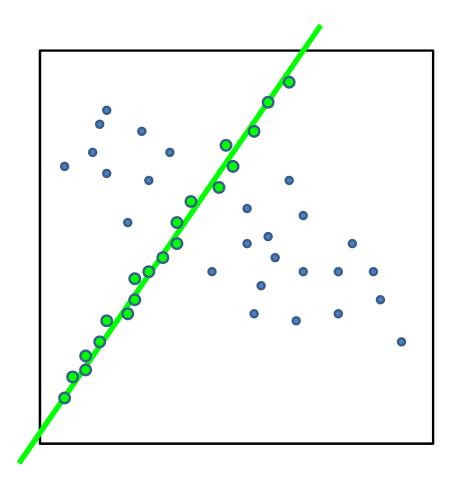


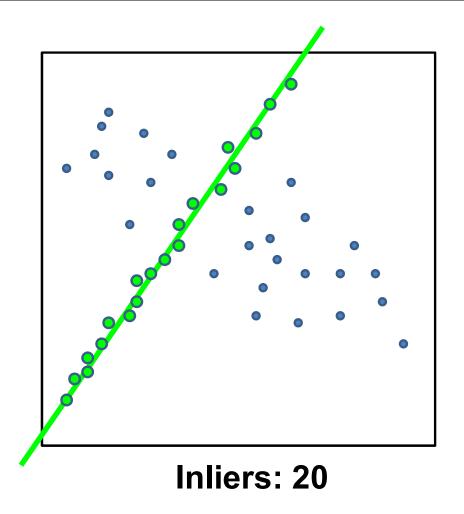




Inliers: 3





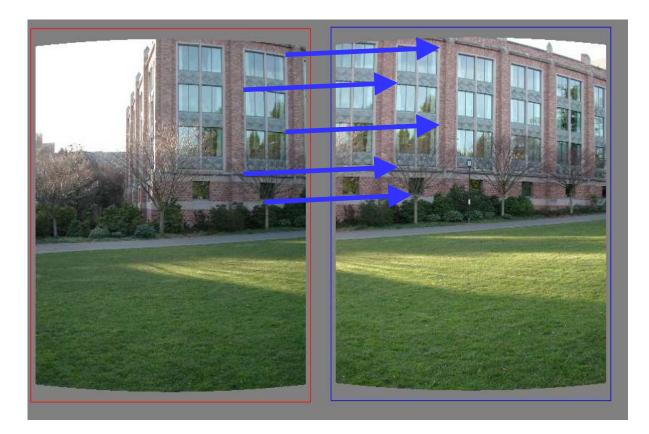


How do we find the best line?

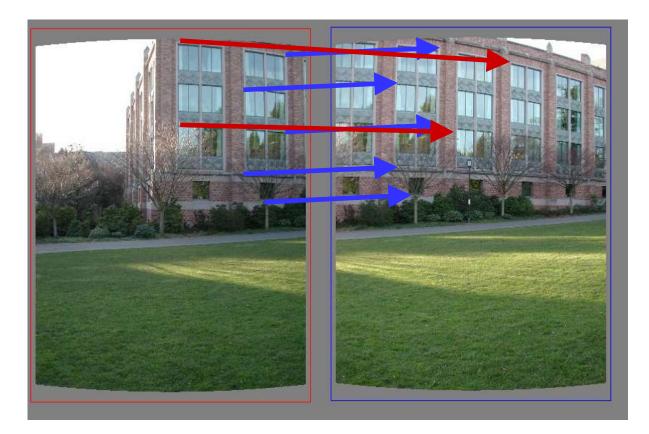
- Unlike least-squares, no simple closed-form solution
- Hypothesize-and-test
 - -Try out many lines, keep the best one
 - -Which lines?

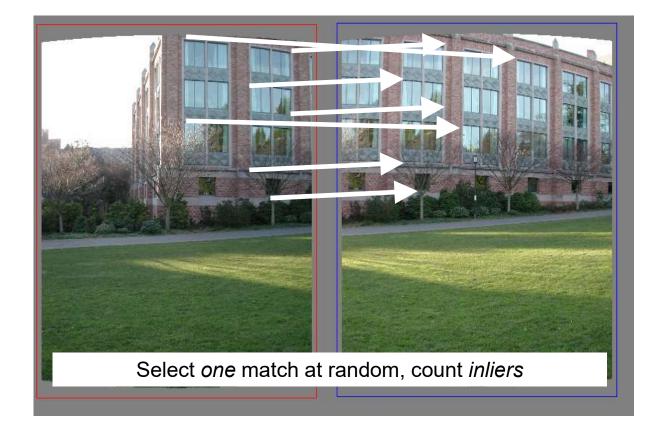
Translations

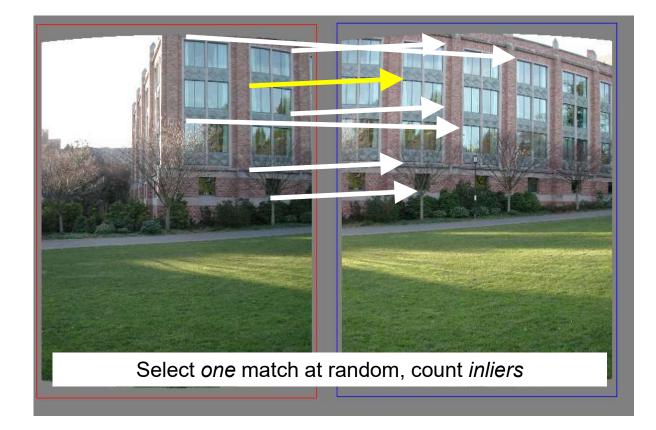
Translations

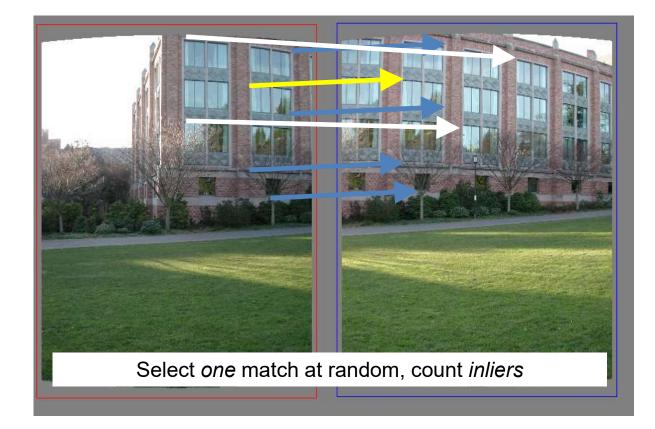


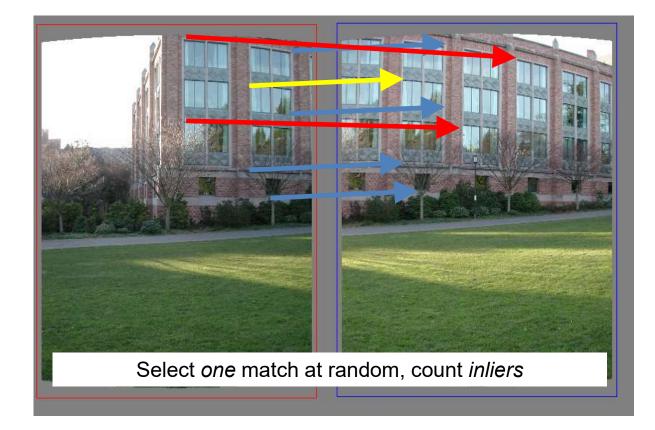
Translations

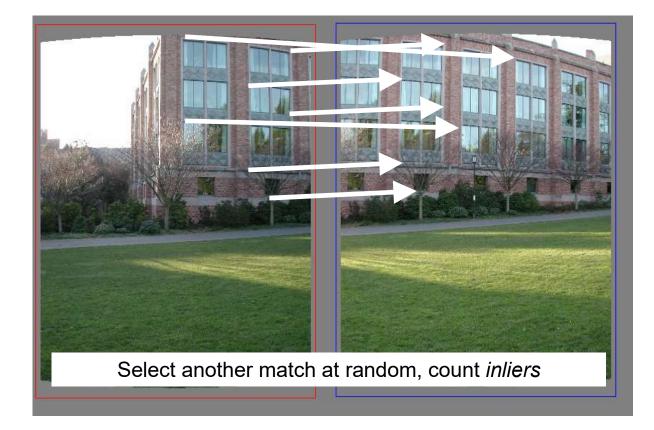


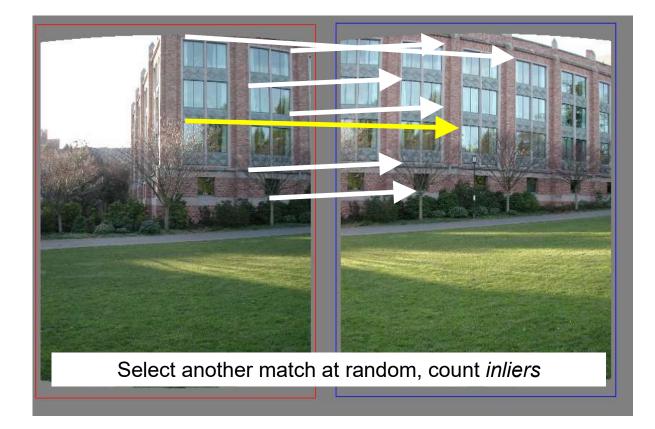




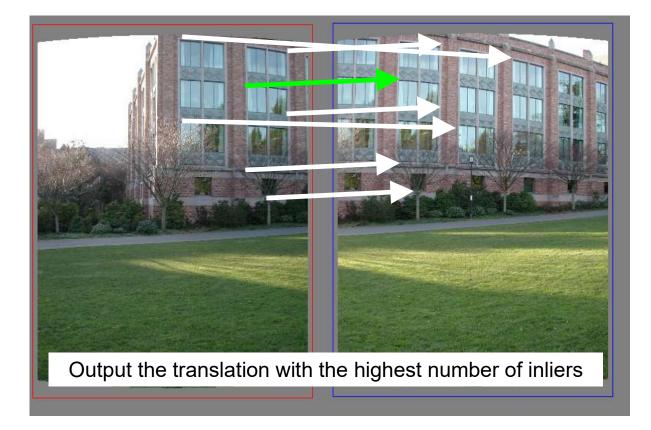












RANSAC

- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian w/ some standard deviation (e.g. 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
 - How many rounds do we need?

RANSAC pros and cons

• Pros

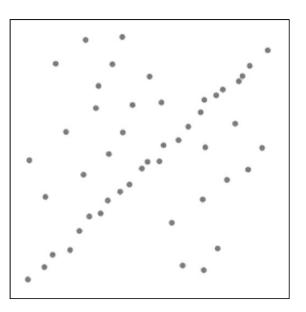
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
 - Parameters to tune
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios
 - We can often do better than brute-force sampling

RANSAC

- Idea:
 - All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are < 50% outliers

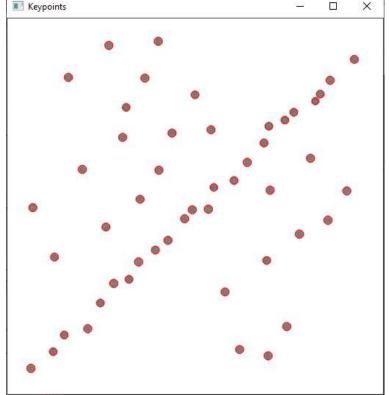
Fitline OpenCV

```
import cv2 as cv
 2
       import numpy as np;
 3
 34
       # Read image
       im = cv.imread("punti.png", cv.IMREAD GRAYSCALE)
 S
 6
 7
       # Setup SimpleBlobDetector parameters.
 8
       params = cv.SimpleBlobDetector Params()
 9
       # Change thresholds
I0
II.
       params.minThreshold = 10;
       params.maxThreshold = 200;
12
13
14
       # Set up the detector with default parameters.
15
       detector = cv.SimpleBlobDetector create(params)
16
17
       # Detect blobs.
       keypoints = detector.detect(im)
18
19
20
       v = [1]
     for elem in keypoints:
21
32
           #print(elem.pt[0])
23
           v.append([elem.pt[0],elem.pt[1]])
24
25
       points = np.array(v)
```



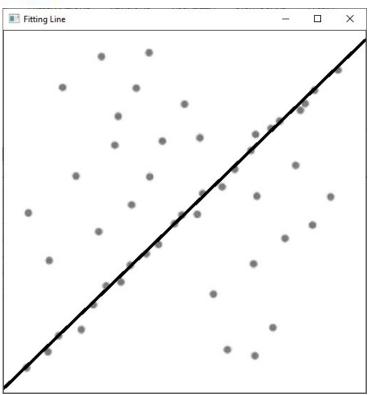
Fitline OpenCV

26 # Draw detected blobs as red circles. 27 28 # cv2.DRAW MATCHES FLAGS DRAW RICH KEYPOINTS ensures the size of the circle corresponds to the size of blob im_with_keypoints = cv.drawKeypoints(im, keypoints, np.array([]), (0,0,255), cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 29 30 # Show keypoints 31 Keypoints ____ X cv.imshow("Keypoints", im with keypoints) 32 cv.waitKey(0) 33



Fitline OpenCV

```
# Show keypoints
31
32
       cv.imshow("Keypoints", im with keypoints)
33
       cv.waitKey(0)
34
35
      vx, vy, x, y = cv.fitLine(np.float32(points), cv.DIST L12, 0, 0.01, 0.01);
36
37
       line = [float(vx),float(vy),float(x),float(y)]
38
39
       left pt = int((-x*vy/vx) + y)
40
       right pt = int(((im.shape[1]-x)*vy/vx)+y)
41
       cv.line(im,(im.shape[1]-1,right pt),(0,left pt),0,3,cv.LINE 8)
42
43
       # Show keypoints
       cv.imshow("Fitting Line", im)
44
45
       cv.waitKey(0)
```



Panoramas

- Now we know how to create panoramas!
- Given two images:
 - Step 1: Detect features
 - Step 2: Match features

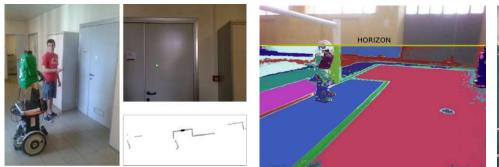
- Step 3: Compute a homography using RANSAC
- Step 4: Combine the images together (somehow)

What if we have more than two images?

UNIVERSITÀ DEGLI STUDI DELLA BASILICATA

Corso di Visione e Percezione

Feature Matching



Docente Domenico D. Bloisi

