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• Home page del corso
http://web.unibas.it/bloisi/corsi/visione-e-percezione.html

• Docente: Domenico Daniele Bloisi

• Periodo: II semestre marzo 2021 – giugno 2021

Martedì 17:00-19:00 (Aula COPERNICO)
Mercoledì 8:30-10:30 (Aula COPERNICO)

Informazioni sul corso

Codice corso Google Classroom: 
https://classroom.google.com/c/
NjI2MjA4MzgzNDFa?cjc=xgolays



• Su appuntamento tramite Google Meet

Per prenotare un appuntamento inviare
una email a
domenico.bloisi@unibas.it

Ricevimento



• Introduzione al linguaggio Python
• Elaborazione delle immagini con Python
• Percezione 2D – OpenCV
• Introduzione al Deep Learning
• ROS
• Il paradigma publisher

and subscriber
• Simulatori
• Percezione 3D - PCL

Programma – Visione e Percezione



• Queste slide sono adattate da
Noah Snavely - CS5670: Computer Vision
"Lecture 5: Feature descriptors and matching“
"Lecture 9: RANSAC"

• I contenuti fanno riferimento ai capitoli 3 e 4 del libro 
"Computer Vision: Algorithms and Applications"
di Richard Szeliski, disponibile al seguente indirizzo
http://szeliski.org/Book/

Riferimenti



Problem: Feature matching



Recap

Keypoint detection: repeatable and 
distinctive

• Corners, blobs, stable regions
• Harris

Descriptors: robust and selective
• spatial histograms of orientation
• SIFT and variants are typically good 

for stitching and recognition



Which features match?



Features matching
Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors
2. Test all the features in I2, find the one with min distance

I1 I2



Overview of point feature matching 

1. Detect a set of distinct 
feature points

2. Define a patch around 
each point

3. Extract and normalize 
the patch

4. Compute a local 
descriptor

5. Match local descriptors

Source: Trym Vegard Haavardsholm



Distance between descriptors

Source: Trym Vegard Haavardsholm



Features distance: SSD
How to define the difference between two features f1, f2?

• Simple approach: L2 distance, ||f1 - f2 ||
i.e., sum of square differences (SSD) between entries of the two descriptors

• can give small distances for ambiguous (incorrect) matches
i.e., does not provide a way to discard ambiguous (bad) matches 

I1 I2

f1 f2



Features distance: Ratio of SSDs

f1 f2f2'

How to define the difference between two features f1, f2?
• Better approach: ratio distance = SSD(f1, f2) / SSD(f1, f2’) 

– f2 is best SSD match to f1 in I2

– f2’ is 2nd best SSD match to f1 in I2

– An ambiguous/bad match will have ratio close to 1
– Look for unique matches which have low ratio
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Feature matching example



Feature matching example

58 matches (thresholded by ratio score)



Example in Colab: ratio test

BFMatcher.knnMatch() to get k best matches.
In this example, we will take k=2 so that we
can apply ratio test



Example in Colab: ratio test results



Feature matching example



Feature matching example

51 matches (thresholded by ratio score)



Feature matching example

51 matches (thresholded by ratio score)

outlier



Feature matching example

51 matches (thresholded by ratio score)

outlier

outlier



Evaluating the results
How can we measure the performance of a feature matcher?



Evaluating the results
How can we measure the performance of a feature matcher?
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feature distance (e.g., SSD)



True/false positives
How can we measure the performance of a feature matcher?

The distance threshold affects performance
• True positives = # of detected matches that are correct

• Suppose we want to maximize these—how to choose threshold?
• False positives = # of detected matches that are incorrect

• Suppose we want to minimize these—how to choose threshold?

50
75

200
false match

true match

feature distance (e.g., SSD)



Large threshold T https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Maximize 
TP



Small threshold T https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Minimize 
FP



https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

True positives and false positives



https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Receiver Operating Characteristic (ROC) curve

T



https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Receiver Operating Characteristic (ROC) curve

T
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Receiver Operating Characteristic (ROC) curve

T
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Receiver Operating Characteristic (ROC) curve

T



https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Receiver Operating Characteristic (ROC) curve

T



If the features selected were bad…

https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf



If the features selected were good…

https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf



Area under the curve

0 1

1

false positive rate

true
positive

rate

# true positives
# matching features (positives)

# false positives
# unmatched features (negatives)

ROC curve  (“Receiver Operator Characteristic”)

recall

1 - specificity

Single number: Area Under the Curve (AUC)

AUC = 0.87
(1.0 is the best)



Feature matching: example using ORB
https://dbloisi.github.io/corsi/images/montagna-1.jpg
https://dbloisi.github.io/corsi/images/montagna-2.jpg



ORB



Brute force matching
Brute-Force matcher is simple. It takes the descriptor of one feature in 
first set and is matched with all other features in second set using 
some distance calculation. And the closest one is returned.



Cross check test 

https://www.uio.no/studier/emner/matnat/its/UNIK4690/v17/forelesninger/lecture_4_2_feature_matching.pdf



Cross check test 

https://www.uio.no/studier/emner/matnat/its/UNIK4690/v17/forelesninger/lecture_4_2_feature_matching.pdf



Sorting
Matches are sorted in ascending order of their distances so that best 
matches (with low distance) come to front.

In Python, le funzioni lambda, dette anche funzioni anonime, 
sono funzioni che vengono usate per un periodo di tempo limitato
e sono legate a funzioni di più alto livello



Result



SIFT Example

http://programmingcomputervision.com/

Univ4.jpg Univ3.jpg



SIFT Example

https://dbloisi.github.io/corsi/lezionivep/sift.ipynb



SIFT vs ORB

https://dbloisi.github.io/corsi/lezionivep/sift.ipynb

https://dbloisi.github.io/corsi/lezionivep/orb.ipynb



outliers

inliers

Excluding outliers



Problem: Fit a line to these datapoints

Robustness



Problem: Fit a line to these datapoints

Least squares fit

Robustness



Least Squares Fit

punti.png



Least Squares Fit



Least Squares Fit



Least Squares Fit



Problem: Fit a line to these datapoints

How can we fix this?

Least squares fit

Robustness



• Given a hypothesized line
• Count the number of points that “agree” with the line

– “Agree” = within a small distance of the line
– I.e., the inliers to that line

• For all possible lines, select the one with the largest number of 
inliers

Idea



Counting inliers



Counting inliers



Counting inliers



Inliers: 3

Counting inliers



Counting inliers



Counting inliers



Inliers: 20

Counting inliers



• Unlike least-squares, no simple closed-form solution 

• Hypothesize-and-test
– Try out many lines, keep the best one
– Which lines?

How do we find the best line?



Translations



Translations



Translations



Select one match at random, count inliers

RANdom SAmple Consensus



Select one match at random, count inliers

RANdom SAmple Consensus



Select one match at random, count inliers

RANdom SAmple Consensus



Select one match at random, count inliers

RANdom SAmple Consensus



Select another match at random, count inliers

RANdom SAmple Consensus



Select another match at random, count inliers

RANdom SAmple Consensus



Select another match at random, count inliers

RANdom SAmple Consensus



Output the translation with the highest number of inliers

RANdom SAmple Consensus



• Inlier threshold related to the amount of noise we expect 
in inliers
– Often model noise as Gaussian w/ some standard deviation 

(e.g. 3 pixels)
• Number of rounds related to the percentage of outliers 

we expect, and the probability of success we’d like to 
guarantee
– Suppose there are 20% outliers, and we want to find the correct 

answer with 99% probability 
– How many rounds do we need?

RANSAC



• Pros
– Simple and general
– Applicable to many different problems
– Often works well in practice

• Cons
– Parameters to tune
– Sometimes too many iterations are required
– Can fail for extremely low inlier ratios
– We can often do better than brute-force sampling

RANSAC pros and cons



• Idea:
– All the inliers will agree with each other on the translation 

vector; the (hopefully small) number of outliers will 
(hopefully) disagree with each other

• RANSAC only has guarantees if there are < 50% 
outliers

RANSAC



Fitline OpenCV

punti.png



Fitline OpenCV



Fitline OpenCV



• Now we know how to create panoramas!

• Given two images:
– Step 1: Detect features
– Step 2: Match features
– Step 3: Compute a homography using RANSAC
– Step 4: Combine the images together (somehow)

Panoramas

What if we have more than two images?
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