
Feature
Matching

UNIVERSITÀ DEGLI STUDI
DELLA BASILICATA

Docente
Domenico D. Bloisi

Corso di Visione e Percezione

• Ricercatore RTD B
Dipartimento di Matematica, Informatica
ed Economia
Università degli studi della Basilicata
http://web.unibas.it/bloisi

• SPQR Robot Soccer Team
Dipartimento di Informatica, Automatica
e Gestionale Università degli studi di
Roma “La Sapienza”
http://spqr.diag.uniroma1.it

Domenico Daniele Bloisi

• Home page del corso
http://web.unibas.it/bloisi/corsi/visione-e-percezione.html

• Docente: Domenico Daniele Bloisi

• Periodo: II semestre marzo 2021 – giugno 2021

Martedì 17:00-19:00 (Aula COPERNICO)
Mercoledì 8:30-10:30 (Aula COPERNICO)

Informazioni sul corso

Codice corso Google Classroom:
https://classroom.google.com/c/
NjI2MjA4MzgzNDFa?cjc=xgolays

• Su appuntamento tramite Google Meet

Per prenotare un appuntamento inviare
una email a
domenico.bloisi@unibas.it

Ricevimento

• Introduzione al linguaggio Python
• Elaborazione delle immagini con Python
• Percezione 2D – OpenCV
• Introduzione al Deep Learning
• ROS
• Il paradigma publisher

and subscriber
• Simulatori
• Percezione 3D - PCL

Programma – Visione e Percezione

• Queste slide sono adattate da
Noah Snavely - CS5670: Computer Vision
"Lecture 5: Feature descriptors and matching“
"Lecture 9: RANSAC"

• I contenuti fanno riferimento ai capitoli 3 e 4 del libro
"Computer Vision: Algorithms and Applications"
di Richard Szeliski, disponibile al seguente indirizzo
http://szeliski.org/Book/

Riferimenti

Problem: Feature matching

Recap

Keypoint detection: repeatable and
distinctive

• Corners, blobs, stable regions
• Harris

Descriptors: robust and selective
• spatial histograms of orientation
• SIFT and variants are typically good

for stitching and recognition

Which features match?

Features matching
Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors
2. Test all the features in I2, find the one with min distance

I1 I2

Overview of point feature matching

1. Detect a set of distinct
feature points

2. Define a patch around
each point

3. Extract and normalize
the patch

4. Compute a local
descriptor

5. Match local descriptors

Source: Trym Vegard Haavardsholm

Distance between descriptors

Source: Trym Vegard Haavardsholm

Features distance: SSD
How to define the difference between two features f1, f2?

• Simple approach: L2 distance, ||f1 - f2 ||
i.e., sum of square differences (SSD) between entries of the two descriptors

• can give small distances for ambiguous (incorrect) matches
i.e., does not provide a way to discard ambiguous (bad) matches

I1 I2

f1 f2

Features distance: Ratio of SSDs

f1 f2f2'

How to define the difference between two features f1, f2?
• Better approach: ratio distance = SSD(f1, f2) / SSD(f1, f2’)

– f2 is best SSD match to f1 in I2

– f2’ is 2nd best SSD match to f1 in I2

– An ambiguous/bad match will have ratio close to 1
– Look for unique matches which have low ratio

I1 I2 ht
tp

s:
//

co
ur

se
s.

cs
.w

as
hi

ng
to

n.
ed

u/
co

ur
se

s/
cs

e4
55

/0
9w

i/L
ec

ts
/l

ec
t7

.p
df

Feature matching example

Feature matching example

58 matches (thresholded by ratio score)

Example in Colab: ratio test

BFMatcher.knnMatch() to get k best matches.
In this example, we will take k=2 so that we
can apply ratio test

Example in Colab: ratio test results

Feature matching example

Feature matching example

51 matches (thresholded by ratio score)

Feature matching example

51 matches (thresholded by ratio score)

outlier

Feature matching example

51 matches (thresholded by ratio score)

outlier

outlier

Evaluating the results
How can we measure the performance of a feature matcher?

Evaluating the results
How can we measure the performance of a feature matcher?

50
75

200

feature distance (e.g., SSD)

True/false positives
How can we measure the performance of a feature matcher?

The distance threshold affects performance
• True positives = # of detected matches that are correct

• Suppose we want to maximize these—how to choose threshold?
• False positives = # of detected matches that are incorrect

• Suppose we want to minimize these—how to choose threshold?

50
75

200
false match

true match

feature distance (e.g., SSD)

Large threshold T https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Maximize
TP

Small threshold T https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Minimize
FP

https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

True positives and false positives

https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Receiver Operating Characteristic (ROC) curve

T

https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Receiver Operating Characteristic (ROC) curve

T

https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Receiver Operating Characteristic (ROC) curve

T

https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Receiver Operating Characteristic (ROC) curve

T

https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Receiver Operating Characteristic (ROC) curve

T

If the features selected were bad…

https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

If the features selected were good…

https://courses.cs.w
ashington.edu/courses/cse455/09w

i/Lects/lect6.pdf

Area under the curve

0 1

1

false positive rate

true
positive

rate

true positives
matching features (positives)

false positives
unmatched features (negatives)

ROC curve (“Receiver Operator Characteristic”)

recall

1 - specificity

Single number: Area Under the Curve (AUC)

AUC = 0.87
(1.0 is the best)

Feature matching: example using ORB
https://dbloisi.github.io/corsi/images/montagna-1.jpg
https://dbloisi.github.io/corsi/images/montagna-2.jpg

ORB

Brute force matching
Brute-Force matcher is simple. It takes the descriptor of one feature in
first set and is matched with all other features in second set using
some distance calculation. And the closest one is returned.

Cross check test

https://www.uio.no/studier/emner/matnat/its/UNIK4690/v17/forelesninger/lecture_4_2_feature_matching.pdf

Cross check test

https://www.uio.no/studier/emner/matnat/its/UNIK4690/v17/forelesninger/lecture_4_2_feature_matching.pdf

Sorting
Matches are sorted in ascending order of their distances so that best
matches (with low distance) come to front.

In Python, le funzioni lambda, dette anche funzioni anonime,
sono funzioni che vengono usate per un periodo di tempo limitato
e sono legate a funzioni di più alto livello

Result

SIFT Example

http://programmingcomputervision.com/

Univ4.jpg Univ3.jpg

SIFT Example

https://dbloisi.github.io/corsi/lezionivep/sift.ipynb

SIFT vs ORB

https://dbloisi.github.io/corsi/lezionivep/sift.ipynb

https://dbloisi.github.io/corsi/lezionivep/orb.ipynb

outliers

inliers

Excluding outliers

Problem: Fit a line to these datapoints

Robustness

Problem: Fit a line to these datapoints

Least squares fit

Robustness

Least Squares Fit

punti.png

Least Squares Fit

Least Squares Fit

Least Squares Fit

Problem: Fit a line to these datapoints

How can we fix this?

Least squares fit

Robustness

• Given a hypothesized line
• Count the number of points that “agree” with the line

– “Agree” = within a small distance of the line
– I.e., the inliers to that line

• For all possible lines, select the one with the largest number of
inliers

Idea

Counting inliers

Counting inliers

Counting inliers

Inliers: 3

Counting inliers

Counting inliers

Counting inliers

Inliers: 20

Counting inliers

• Unlike least-squares, no simple closed-form solution

• Hypothesize-and-test
– Try out many lines, keep the best one
– Which lines?

How do we find the best line?

Translations

Translations

Translations

Select one match at random, count inliers

RANdom SAmple Consensus

Select one match at random, count inliers

RANdom SAmple Consensus

Select one match at random, count inliers

RANdom SAmple Consensus

Select one match at random, count inliers

RANdom SAmple Consensus

Select another match at random, count inliers

RANdom SAmple Consensus

Select another match at random, count inliers

RANdom SAmple Consensus

Select another match at random, count inliers

RANdom SAmple Consensus

Output the translation with the highest number of inliers

RANdom SAmple Consensus

• Inlier threshold related to the amount of noise we expect
in inliers
– Often model noise as Gaussian w/ some standard deviation

(e.g. 3 pixels)
• Number of rounds related to the percentage of outliers

we expect, and the probability of success we’d like to
guarantee
– Suppose there are 20% outliers, and we want to find the correct

answer with 99% probability
– How many rounds do we need?

RANSAC

• Pros
– Simple and general
– Applicable to many different problems
– Often works well in practice

• Cons
– Parameters to tune
– Sometimes too many iterations are required
– Can fail for extremely low inlier ratios
– We can often do better than brute-force sampling

RANSAC pros and cons

• Idea:
– All the inliers will agree with each other on the translation

vector; the (hopefully small) number of outliers will
(hopefully) disagree with each other

• RANSAC only has guarantees if there are < 50%
outliers

RANSAC

Fitline OpenCV

punti.png

Fitline OpenCV

Fitline OpenCV

• Now we know how to create panoramas!

• Given two images:
– Step 1: Detect features
– Step 2: Match features
– Step 3: Compute a homography using RANSAC
– Step 4: Combine the images together (somehow)

Panoramas

What if we have more than two images?

Feature
Matching

UNIVERSITÀ DEGLI STUDI
DELLA BASILICATA

Docente
Domenico D. Bloisi

Corso di Visione e Percezione

