
Input,
Elaborazione,
Output

Corso di STATISTICA, INFORMATICA,
ELABORAZIONE DELLE INFORMAZIONI

Modulo di Sistemi di Elaborazione delle
Informazioni

UNIVERSITÀ DEGLI STUDI
DELLA BASILICATA

Docente:
Domenico Daniele
Bloisi

• Professore Associato
 Dipartimento di Matematica, Informatica
 ed Economia
 Università degli studi della Basilicata

http://web.unibas.it/bloisi

• SPQR Robot Soccer Team
 Dipartimento di Informatica, Automatica
 e Gestionale Università degli studi di
 Roma “La Sapienza”
 http://spqr.diag.uniroma1.it

Domenico Daniele Bloisi

http://web.unibas.it/bloisi/
http://spqr.diag.uniroma1.it/

• Intelligent surveillance
• Robot vision
• Medical image analysis

Interessi di ricerca

https://youtu.be/2KHNZX7UIWQ

https://youtu.be/9a70Ucgbi_U

https://youtu.be/2KHNZX7UIWQ
https://youtu.be/2KHNZX7UIWQ
https://youtu.be/9a70Ucgbi_U
http://www.youtube.com/watch?v=9a70Ucgbi_U
http://www.youtube.com/watch?v=2KHNZX7UIWQ

• UNIBAS WOLVES is the robot soccer team of the
University of Basilicata. Established in 2019, it is
focussed on developing software for NAO soccer
robots participating in RoboCup competitions.

https://sites.google.com/unibas.it/wolvesUNIBAS Wolves

• UNIBAS WOLVES
team is twinned with
SPQR Team at
Sapienza University
of Rome

https://youtu.be/ji0OmkaWh20

https://sites.google.com/unibas.it/wolves
http://spqr.diag.uniroma1.it/
https://youtu.be/ji0OmkaWh20
http://www.youtube.com/watch?v=ji0OmkaWh20

Il corso di STATISTICA, INFORMATICA, ELABORAZIONE DELLE INFORMAZIONI

● include 3 moduli:
○ SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

(il martedì - docente: Domenico Bloisi)
○ INFORMATICA

(il mercoledì - docente: Enzo Veltri)
○ PROBABILITA’ E STATISTICA MATEMATICA

(il giovedì - docente: Antonella Iuliano)

● Periodo: I semestre ottobre 2022 – gennaio 2023

Informazioni sul corso

● Home page del modulo:
 https://web.unibas.it/bloisi/corsi/sei.html

● Martedì dalle 11:30 alle 13:30

Informazioni sul modulo

https://web.unibas.it/bloisi/corsi/sei.html

• In presenza, durante il periodo delle lezioni:
Lunedì dalle 17:00 alle 18:00
presso Edificio 3D, II piano, stanza 15
Si invitano gli studenti a controllare regolarmente la bacheca degli
avvisi per eventuali variazioni

• Tramite google Meet e al di fuori del periodo delle lezioni:
da concordare con il docente tramite email

Per prenotare un appuntamento inviare
una email a

domenico.bloisi@unibas.it

Ricevimento Bloisi

http://web.unibas.it/bloisi/corsi/sistemi-operativi.html#avvisi
http://web.unibas.it/bloisi/corsi/sistemi-operativi.html#avvisi
mailto:domenico.bloisi@univr.it

2 - 8

Starting out with Python
Fifth Edition

Chapter 2
Input, Processing, and Output

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

2 - 9Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Topics (1 of 2)

• Designing a Program

• Input, Processing, and Output

• Displaying Output with print Function

• Comments

• Variables

• Reading Input from the Keyboard

• Performing Calculations

• String Concatenation

2 - 10Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Topics (2 of 2)

• More About The print Function

• Displaying Formatted Output

• Named Constants

• Introduction to Turtle Graphics

2 - 11Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Designing a Program (1 of 3)

• Programs must be designed before they are written

• Program development cycle:
– Design the program
– Write the code
– Correct syntax errors
– Test the program
– Correct logic errors

2 - 12Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Designing a Program (2 of 3)

• Design is the most important part of the program development cycle

• Understand the task that the program is to perform
– Work with customer to get a sense what the program is supposed to do
– Ask questions about program details
– Create one or more software requirements

2 - 13Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Designing a Program (3 of 3)

• Determine the steps that must be taken to perform the task
– Break down required task into a series of steps
– Create an algorithm, listing logical steps that must be taken

• Algorithm: set of well-defined logical steps that must be taken to perform
a task

2 - 14Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Pseudocode
• Pseudocode: fake code

– Informal language that has no syntax rule
– Not meant to be compiled or executed
– Used to create model program

▪ No need to worry about syntax errors, can focus on program’s design
▪ Can be translated directly into actual code in any programming language

2 - 15Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Flowcharts (1 of 2)

• Flowchart: diagram that graphically depicts the steps in a program
– Ovals are terminal symbols
– Parallelograms are input and output symbols
– Rectangles are processing symbols
– Symbols are connected by arrows that represent the flow of the program

3 - 16Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Flowcharts (2 of 2)

Figure 2-2 The program development cycle

2 - 17Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Input, Processing, and Output
• Typically, computer performs three-step process

– Receive input
▪ Input: any data that the program receives while it is running

– Perform some process on the input
▪ Example: mathematical calculation

– Produce output

2 - 18Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Displaying Output with the print Function
• Function: piece of prewritten code that performs an operation

• print function: displays output on the screen

• Argument: data given to a function
– Example: data that is printed to screen

• Statements in a program execute in the order that they appear
– From top to bottom

2 - 19Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Strings and String Literals
• String: sequence of characters that is used as data

• String literal: string that appears in actual code of a program
– Must be enclosed in single (') or double (") quote marks
– String literal can be enclosed in triple quotes (''' or """)

▪ Enclosed string can contain both single and double quotes and can have multiple lines

2 - 20Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Comments
• Comments: notes of explanation within a program

– Ignored by Python interpreter
▪ Intended for a person reading the program’s code

– Begin with a # character

• End-line comment: appears at the end of a line of code
– Typically explains the purpose of that line

2 - 21Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Variables
• Variable: name that represents a value stored in the computer memory

– Used to access and manipulate data stored in memory
– A variable references the value it represents

• Assignment statement: used to create a variable and make it reference
data

– General format is variable = expression
▪ Example: age = 29
▪ Assignment operator: the equal sign (=)

2 - 22Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Variables (cont’d.)
• In assignment statement, variable receiving value must be on left side

• A variable can be passed as an argument to a function
– Variable name should not be enclosed in quote marks

• You can only use a variable if a value is assigned to it

2 - 23Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Variable Naming Rules
• Rules for naming variables in Python:

– Variable name cannot be a Python keyword
– Variable name cannot contain spaces
– First character must be a letter or an underscore
– After first character may use letters, digits, or underscores
– Variable names are case sensitive

• Variable name should reflect its use

2 - 24Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Displaying Multiple Items with the print Function
• Python allows one to display multiple items with a single call to print

– Items are separated by commas when passed as arguments
– Arguments displayed in the order they are passed to the function
– Items are automatically separated by a space when displayed on screen

2 - 25Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Variable Reassignment
• Variables can reference different values while program is running

• Garbage collection: removal of values that are no longer referenced by
variables

– Carried out by Python interpreter

• A variable can refer to item of any type
– Variable that has been assigned to one type can be reassigned to another

type

2 - 26Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Numeric Data Types, Literals, and the str Data Type
• Data types: categorize value in memory

– e.g., int for integer, float for real number, str used for storing strings in
memory

• Numeric literal: number written in a program
– No decimal point considered int, otherwise, considered float

• Some operations behave differently depending on data type

2 - 27Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Reassigning a Variable to a Different Type
• A variable in Python can refer to items of any type

Figure 2-7 The variable x references an integer

Figure 2-8 The variable x references a string

2 - 28Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Reading Input from the Keyboard
• Most programs need to read input from the user

• Built-in input function reads input from keyboard
– Returns the data as a string
– Format: variable = input(prompt)

▪ prompt is typically a string instructing user to enter a value

– Does not automatically display a space after the prompt

2 - 29Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Reading Numbers with the input Function
• input function always returns a string

• Built-in functions convert between data types
– int(item) converts item to an int
– float(item) converts item to a float
– Nested function call: general format:
function1(function2(argument))
▪ value returned by function2 is passed to function1

– Type conversion only works if item is valid numeric value, otherwise, throws
exception

2 - 30Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Performing Calculations
• Math expression: performs calculation and gives a value

– Math operator: tool for performing calculation
– Operands: values surrounding operator

▪ Variables can be used as operands

– Resulting value typically assigned to variable

• Two types of division:
– / operator performs floating point division
– // operator performs integer division

▪ Positive results truncated, negative rounded away from zero

2 - 31Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Operator Precedence and Grouping with
Parentheses
• Python operator precedence:

1. Operations enclosed in parentheses
▪ Forces operations to be performed before others

2. Exponentiation (**)
3. Multiplication (*), division (/ and //), and remainder (%)
4. Addition (+) and subtraction (-)

• Higher precedence performed first
– Same precedence operators execute from left to right

2 - 32Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

The Exponent Operator and the Remainder Operator
• Exponent operator (**): Raises a number to a power

– x ** y = xy

• Remainder operator (%): Performs division and returns the remainder
– a.k.a. modulus operator
– e.g., 4%2=0, 5%2=1
– Typically used to convert times and distances, and to detect odd or even

numbers

2 - 33Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Converting Math Formulas to Programming
Statements
• Operator required for any mathematical operation

• When converting mathematical expression to programming statement:
– May need to add multiplication operators
– May need to insert parentheses

2 - 34Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Mixed-Type Expressions and Data Type Conversion
• Data type resulting from math operation depends on data types of

operands
– Two int values: result is an int
– Two float values: result is a float
– int and float: int temporarily converted to float, result of the

operation is a float
▪ Mixed-type expression

– Type conversion of float to int causes truncation of fractional part

2 - 35Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Breaking Long Statements into Multiple Lines (1 of 2)

• Long statements cannot be viewed on screen without scrolling and
cannot be printed without cutting off

• Multiline continuation character (\): Allows to break a statement into
multiple lines

result = var1 * 2 + var2 * 3 + \

 var3 * 4 + var4 * 5

2 - 36Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Breaking Long Statements into Multiple Lines (2 of 2)

• Any part of a statement that is enclosed in parentheses can be broken
without the line continuation character.

print("Monday's sales are", monday,

 "and Tuesday's sales are", tuesday,

 "and Wednesday's sales are", Wednesday)

total = (value1 + value2 +

 value3 + value4 +

 value5 + value6)

2 - 37Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

String Concatenation (1 of 2)

• To append one string to the end of another string

• Use the + operator to concatenate strings

>>> message = 'Hello ' + 'world'
>>> print(message)
Hello world
>>>

2 - 38Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

String Concatenation (2 of 2)

• You can use string concatenation to break up a long string literal

print('Enter the amount of ' +
 'sales for each day and ' +
 'press Enter.')

This statement will display the following:

Enter the amount of sales for each day and press Enter.

2 - 39Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Implicit String Literal Concatenation (1 of 2)

• Two or more string literals written adjacent to each other are implicitly
concatenated into a single string

>>> my_str = 'one' 'two' 'three'
>>> print(my_str)
onetwothree

2 - 40Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

print('Enter the amount of '
 'sales for each day and '
 'press Enter.')

This statement will display the following:

Enter the amount of sales for each day and press Enter.

Implicit String Literal Concatenation (2 of 2)

2 - 41Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

More About The print Function (1 of 2)

• print function displays line of output
– Newline character at end of printed data
– Special argument end='delimiter' causes print to place delimiter

at end of data instead of newline character

• print function uses space as item separator
– Special argument sep='delimiter' causes print to use delimiter

as item separator

2 - 42Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

More About The print Function (2 of 2)

• Special characters appearing in string literal
– Preceded by backslash (\)

▪ Examples: newline (\n), horizontal tab (\t)

– Treated as commands embedded in string

2 - 43Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

• An f-string is a special type of string literal that is prefixed with the letter f

• F-strings support placeholders for variables

>>> print(f'Hello world')
Hello world

>>> name = 'Johnny'
>>> print(f'Hello {name}.')
Hello Johnny.

Displaying Formatted Output with F-strings (1 of 8)

2 - 44Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

• Placeholders can also be expressions that are evaluated

>>> print(f'The value is {10 + 2}.')
The value is 12.

>>> val = 10
>>> print(f'The value is {val + 2}.')
The value is 12.

Displaying Formatted Output with F-strings (2 of 8)

2 - 45Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

• Format specifiers can be used with placeholders

• .2f means:
– round the value to 2 decimal places
– display the value as a floating-point number

>> num = 123.456789
>> print(f'{num:.2f}')
123.46
>>>

Displaying Formatted Output with F-strings (3 of 8)

2 - 46Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Displaying Formatted Output with F-strings (4 of 8)

• Other examples:

>> num = 1000000.00
>> print(f'{num:,.2f}')
1,000,000.00

>>> discount = 0.5
>>> print(f'{discount:.0%}')
50%

2 - 47Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Displaying Formatted Output with F-strings (5 of 8)

• Other examples:

>> num = 123456789
>> print(f'{num:,d}')
123,456,789

>>> num = 12345.6789
>>> print(f'{num:.2e}')
1.23e+04

2 - 48Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Displaying Formatted Output with F-strings (6 of 8)

• Specifying a minimum field width:

>>> num = 12345.6789
>>> print(f'The number is {num:12,.2f}')
The number is 12,345.68

Field width = 12

The number is 12,345.68

Field width = 12

2 - 49Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Displaying Formatted Output with F-strings (7 of 8)

• Aligning values within a field
– Use < for left alignment
– Use > for right alignment
– Use ^ for center alignment

• Examples:
– print(f'{num:<20.2f}')

– print(f'{num:>20.2f}')

– print(f'{num:^20.2f}')

2 - 50Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Displaying Formatted Output with F-strings (8 of 8)

• The order of designators in a format specifier
– When using multiple designators in a format specifier, write them in this order:

• Example:
– print(f'{number:^10,.2f}')

[alignment][width][,][.precision][type]

2 - 51Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Magic Numbers
• A magic number is an unexplained numeric value that appears in a

program’s code. Example:

amount = balance * 0.069

• What is the value 0.069? An interest rate? A fee percentage? Only the
person who wrote the code knows for sure.

2 - 52Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

The Problem with Magic Numbers
• It can be difficult to determine the purpose of the number.

• If the magic number is used in multiple places in the program, it can take
a lot of effort to change the number in each location, should the need
arise.

• You take the risk of making a mistake each time you type the magic
number in the program’s code.

– For example, suppose you intend to type 0.069, but you accidentally type .0069. This
mistake will cause mathematical errors that can be difficult to find.

2 - 53Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Named Constants
• You should use named constants instead of magic numbers.

• A named constant is a name that represents a value that does not
change during the program's execution.

• Example:

INTEREST_RATE = 0.069

• This creates a named constant named INTEREST_RATE, assigned the
value 0.069. It can be used instead of the magic number:
amount = balance * INTEREST_RATE

2 - 54Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Advantages of Using Named Constants
• Named constants make code self-explanatory (self-documenting)

• Named constants make code easier to maintain (change the value
assigned to the constant, and the new value takes effect everywhere the
constant is used)

• Named constants help prevent typographical errors that are common
when using magic numbers

2 - 55Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Introduction to Turtle Graphics (1 of 2)

• Python's turtle graphics system displays a small cursor known as a turtle.

• You can use Python statements

to move the turtle around the screen,

drawing lines and shapes.

2 - 56Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Introduction to Turtle Graphics (2 of 2)

• To use the turtle graphics system, you must import the turtle module with
this statement:

import turtle

This loads the turtle module into memory

 Purtroppo non possiamo (facilmente) usare Turtle in Colab

2 - 57Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

ColabTurtle
• Create an empty code cell and type:

!pip3 install ColabTurtle

• Run the code cell.

2 - 58Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

InitializeTurtle

2 - 59Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Moving the Turtle Forward

2 - 60Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Turning the Turtle

2 - 61Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Resetting the Turtle’s Window
• The turtle.clear() statement:

– Erases all drawings that currently appear in the graphics window.
– Does not change the turtle's position.
– Does not change the drawing color.
– Does not change the graphics window’s background color.

2 - 62Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Setting the Turtle's Heading

2 - 63Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Setting the Pen Up or Down (1 of 2)

• When the turtle's pen is down, the turtle draws a line as it moves. By
default, the pen is down.

• When the turtle's pen is up, the turtle does not draw as it moves.

• Use the turtle.penup() statement to raise the pen.

• Use the turtle.pendown() statement to lower the pen.

2 - 64Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Setting the Pen Up or Down (2 of 2)

2 - 65Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Changing the Pen Size and Drawing Color
• Use the turtle.pensize(width) statement to change the width of

the turtle's pen, in pixels.

• Use the turtle.pencolor(color) statement to change the turtle's
drawing color.

– See Appendix D in your textbook for a complete list of colors.

2 - 66Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Working with the Turtle's Window
• Use the turtle.bgcolor(color) statement to set the window's

background color.
– See Appendix D in your textbook for a complete list of colors.

2 - 67Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Resetting the Turtle’s Window (3 of 3)

• The turtle.clearscreen() statement:
– Erases all drawings that currently appear in the graphics window.
– Resets the drawing color to black.
– Resets the turtle to its original position in the center of the screen.
– Resets the graphics window’s background color to white.

2 - 68Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Moving the Turtle to a Specific Location
• Use the turtle.goto(x, y) statement to move the turtle to a specific

location.

2 - 69Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Animation Speed
• Use the turtle.speed(speed) command to change the speed at

which the turtle moves.
– The speed argument is a number in the range of 0 through 10.
– If you specify 0, then the turtle will make all of its moves instantly (animation

is disabled).

2 - 70Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Hiding and Displaying the Turtle
• Use the turtle.hideturtle() command to hide the turtle.

– This command does not change the way graphics are drawn, it simply
hides the turtle icon.

• Use the turtle.showturtle() command to display the turtle.

2 - 71Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Displaying Text (1 of 2)

• Use the turtle.write(text) statement to display text in the turtle's
graphics window.

– The text argument is a string that you want to display.
– The lower-left corner of the first character will be positioned at the turtle’s X

and Y coordinates.

2 - 72Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Displaying Text (2 of 2)

2 - 73Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Summary
• This chapter covered:

– The program development cycle, tools for program design, and the design
process

– Ways in which programs can receive input, particularly from the keyboard
– Ways in which programs can present and format output
– Use of comments in programs
– Uses of variables and named constants
– Tools for performing calculations in programs
– The turtle graphics system

Input,
Elaborazione,
Output

Corso di STATISTICA, INFORMATICA,
ELABORAZIONE DELLE INFORMAZIONI

Modulo di Sistemi di Elaborazione delle
Informazioni

UNIVERSITÀ DEGLI STUDI
DELLA BASILICATA

Docente:
Domenico Daniele
Bloisi

