
Classi

Corso di STATISTICA, INFORMATICA,
ELABORAZIONE DELLE INFORMAZIONI

Modulo di Sistemi di Elaborazione delle
Informazioni

UNIVERSITÀ DEGLI STUDI
DELLA BASILICATA

Docente:
Domenico Daniele
Bloisi

• Professore Associato
 Dipartimento di Matematica, Informatica
 ed Economia
 Università degli studi della Basilicata

http://web.unibas.it/bloisi

• SPQR Robot Soccer Team
 Dipartimento di Informatica, Automatica
 e Gestionale Università degli studi di
 Roma “La Sapienza”
 http://spqr.diag.uniroma1.it

Domenico Daniele Bloisi

http://web.unibas.it/bloisi/
http://spqr.diag.uniroma1.it/

• Intelligent surveillance
• Robot vision
• Medical image analysis

Interessi di ricerca

https://youtu.be/2KHNZX7UIWQ

https://youtu.be/9a70Ucgbi_U

https://youtu.be/2KHNZX7UIWQ
https://youtu.be/2KHNZX7UIWQ
https://youtu.be/9a70Ucgbi_U
http://www.youtube.com/watch?v=9a70Ucgbi_U
http://www.youtube.com/watch?v=2KHNZX7UIWQ

• UNIBAS WOLVES is the robot soccer team of the
University of Basilicata. Established in 2019, it is
focussed on developing software for NAO soccer
robots participating in RoboCup competitions.

https://sites.google.com/unibas.it/wolvesUNIBAS Wolves

• UNIBAS WOLVES
team is twinned with
SPQR Team at
Sapienza University
of Rome

https://youtu.be/ji0OmkaWh20

https://sites.google.com/unibas.it/wolves
http://spqr.diag.uniroma1.it/
https://youtu.be/ji0OmkaWh20
http://www.youtube.com/watch?v=ji0OmkaWh20

Il corso di STATISTICA, INFORMATICA, ELABORAZIONE DELLE INFORMAZIONI

● include 3 moduli:
○ SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

(il martedì - docente: Domenico Bloisi)
○ INFORMATICA

(il mercoledì - docente: Enzo Veltri)
○ PROBABILITA’ E STATISTICA MATEMATICA

(il giovedì - docente: Antonella Iuliano)

● Periodo: I semestre ottobre 2022 – gennaio 2023

Informazioni sul corso

• In presenza, durante il periodo delle lezioni:
Lunedì dalle 17:00 alle 18:00
presso Edificio 3D, II piano, stanza 15
Si invitano gli studenti a controllare regolarmente la bacheca degli
avvisi per eventuali variazioni

• Tramite google Meet e al di fuori del periodo delle lezioni:
da concordare con il docente tramite email

Per prenotare un appuntamento inviare
una email a

domenico.bloisi@unibas.it

Ricevimento Bloisi

http://web.unibas.it/bloisi/corsi/sistemi-operativi.html#avvisi
http://web.unibas.it/bloisi/corsi/sistemi-operativi.html#avvisi
mailto:domenico.bloisi@univr.it

Recap

9 - 8Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Dictionaries

9 - 9Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Retrieving a Value from a Dictionary

9 - 10Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Retrieving a Value from a Dictionary

9 - 11Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Retrieving a Value from a Dictionary

9 - 12Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Getting the Number of Elements and Mixing Data
Types

9 - 13Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Creating an Empty Dictionary and Using for Loop to
Iterate Over a Dictionary

9 - 14Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

9 - 15Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Sets
• Set: object that stores a collection of data in same way as mathematical

set
– All items must be unique
– Set is unordered
– Elements can be of different data types

9 - 16Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

9 - 17Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

9 - 18Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Esercizio

Come posso creare un set contenente i 3 elementi "uno",
"due e "tre"?

9 - 19Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 20

Starting out with Python
Fifth Edition

Chapter 10
Classes and Object-Oriented
Programming

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 21Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Topics
• Procedural and Object-Oriented Programming

• Classes

• Working with Instances

• Techniques for Designing Classes

10 - 22Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Procedural Programming
• Procedural programming: writing programs made of functions that

perform specific tasks
– Procedures typically operate on data items that are separate from the

procedures
– Data items commonly passed from one procedure to another
– Focus: to create procedures that operate on the program’s data

10 - 23Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Procedural Programming

10 - 24Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Object-Oriented Programming (1 of 4)

• Object-oriented programming: focused on creating objects

• Object: entity that contains data and procedures
– Data is known as data attributes and procedures are known as methods

▪ Methods perform operations on the data attributes

• Encapsulation: combining data and code into a single object

10 - 25Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Object-Oriented Programming (1 of 4)

https://positiwise.com/blog/object-oriented-programming-vs-functional-programming-comparison/

10 - 26Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Object-Oriented Programming (2 of 4)

Figure 10-1 An object contains data attributes and methods

10 - 27Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Object-Oriented Programming (3 of 4)

• Data hiding: object’s data attributes are hidden from code outside the
object

– Access restricted to the object’s methods
▪ Protects from accidental corruption
▪ Outside code does not need to know internal structure of the object

• Object reusability: the same object can be used in different programs
– Example: 3D image object can be used for architecture and game

programming

10 - 28Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Object-Oriented Programming (4 of 4)

Figure 10-2 Code outside the object interacts with the object’s methods

10 - 29Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

https://slideplayer.com
/slide/12352880/

10 - 30Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

An Everyday Example of an Object
• Data attributes: define the state of an object

– Example: clock object would have second, minute, and hour data
attributes

• Public methods: allow external code to manipulate the object
– Example: set_time, set_alarm_time

• Private methods: used for object’s inner workings

10 - 31Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Classes (1 of 3)

• Class: code that specifies the data attributes and methods of a particular
type of object

– Similar to a blueprint of a house or a cookie cutter

• Instance: an object created from a class
– Similar to a specific house built according to the blueprint or a specific

cookie
– There can be many instances of one class

10 - 32Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Classes (2 of 3)

Figure 10-3 A blueprint and houses built from the blueprint

10 - 33Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Classes (2 of 3)

10 - 34Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Classes (3 of 3)

Figure 10-4 The housefly and mosquito objects are instances of the Insect class

10 - 35Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Class Definitions (1 of 4)

• Class definition: set of statements that define a class’s methods and data
attributes

– Format: begin with class Class_name:
▪ Class names often start with uppercase letter

– Method definition like any other python function definition
▪ self parameter: required in every method in the class – references the

specific object that the method is working on

10 - 36Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Class Definitions (2 of 4)

• Initializer method: automatically executed when an instance of the class
is created

– Initializes object’s data attributes and assigns self parameter to the object
that was just created

– Format: def __init__ (self):
– Usually the first method in a class definition

10 - 37Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 38Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Class Definitions (3 of 4)

Figure 10-5 Actions caused by the Coin() expression

10 - 39Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Class Definitions (4 of 4)

• To create a new instance of a class call the initializer method
– Format: My_instance = Class_Name()

• To call any of the class methods using the created instance, use dot
notation

– Format: My_instance.method()
– Because the self parameter references the specific instance of the object,

the method will affect this instance
▪ Reference to self is passed automatically

10 - 40Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 41Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 42Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Hiding Attributes and Storing Classes in Modules
• An object’s data attributes should be private

– To make sure of this, place two underscores (__) in front of attribute name
▪ Example: __current_minute

• Classes can be stored in modules
– Filename for module must end in .py
– Module can be imported to programs that use the class

10 - 43Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 44Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

def main():

 my_coin = Coin()

 print('This side is up:', my_coin.get_sideup())

 print('I am going to toss the coin 100 times:')

 for count in range(100):

 my_coin.toss()

 print(my_coin.get_sideup())

main()

10 - 45Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

The __str__ method
• Object’s state: the values of the object’s attribute at a given moment

• __str__ method: displays the object’s state
– Automatically called when the object is passed as an argument to the
print function

– Automatically called when the object is passed as an argument to the str
function

10 - 46Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Working With Instances (1 of 3)

• Instance attribute: belongs to a specific instance of a class
– Created when a method uses the self parameter to create an attribute

• If many instances of a class are created, each would have its own set of
attributes

10 - 47Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Working With Instances (2 of 3)

Figure 10-7 The coin1, coin2, and coin3 variables reference three Coin objects

10 - 48Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Working With Instances (3 of 3)

Figure 10-8 The objects after the toss method

10 - 49Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Accessor and Mutator Methods
• Typically, all of a class’s data attributes are private and provide methods

to access and change them

• Accessor methods: return a value from a class’s attribute without
changing it

– Safe way for code outside the class to retrieve the value of attributes

• Mutator methods: store or change the value of a data attribute

10 - 50Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Passing Objects as Arguments
• Methods and functions often need to accept objects as arguments

• When you pass an object as an argument, you are actually passing a
reference to the object

– The receiving method or function has access to the actual object
▪ Methods of the object can be called within the receiving function or method,

and data attributes may be changed using mutator methods

10 - 51Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Techniques for Designing Classes (1 of 3)

• UML diagram: standard diagrams for graphically depicting
object-oriented systems

– Stands for Unified Modeling Language

• General layout: box divided into three sections:
– Top section: name of the class
– Middle section: list of data attributes
– Bottom section: list of class methods

10 - 52Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Techniques for Designing Classes (2 of 3)

Figure 10-9 General layout of a UML diagram for a class

10 - 53Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Techniques for Designing Classes (3 of 3)

Figure 10-10 UML diagram for the Coin class

10 - 54Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Finding the Classes in a Problem (1 of 4)

• When developing object oriented program, first goal is to identify classes
– Typically involves identifying the real-world objects that are in the problem
– Technique for identifying classes:

1. Get written description of the problem domain
2. Identify all nouns in the description, each of which is a potential class
3. Refine the list to include only classes that are relevant to the problem

10 - 55Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Finding the Classes in a Problem (2 of 4)

1. Get written description of the problem domain
– May be written by you or by an expert
– Should include any or all of the following:

▪ Physical objects simulated by the program
▪ The role played by a person
▪ The result of a business event
▪ Recordkeeping items

10 - 56Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Finding the Classes in a Problem (3 of 4)

2. Identify all nouns in the description, each of which is a potential class
– Should include noun phrases and pronouns
– Some nouns may appear twice

10 - 57Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Finding the Classes in a Problem (4 of 4)

3. Refine the list to include only classes that are relevant to the problem
– Remove nouns that mean the same thing
– Remove nouns that represent items that the program does not need to be

concerned with
– Remove nouns that represent objects, not classes
– Remove nouns that represent simple values that can be assigned to a

variable

10 - 58Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Identifying a Class’s Responsibilities
• A classes responsibilities are:

– The things the class is responsible for knowing
▪ Identifying these helps identify the class’s data attributes

– The actions the class is responsible for doing
▪ Identifying these helps identify the class’s methods

• To find out a class’s responsibilities look at the problem domain
– Deduce required information and actions

10 - 59Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Summary
• This chapter covered:

– Procedural vs. object-oriented programming
– Classes and instances
– Class definitions, including:

▪ The self parameter
▪ Data attributes and methods
▪ __init__ and __str__ functions
▪ Hiding attributes from code outside a class

– Storing classes in modules
– Designing classes

Classi

Corso di STATISTICA, INFORMATICA,
ELABORAZIONE DELLE INFORMAZIONI

Modulo di Sistemi di Elaborazione delle
Informazioni

UNIVERSITÀ DEGLI STUDI
DELLA BASILICATA

Docente:
Domenico Daniele
Bloisi

