Corso di STATISTICA, INFORMATICA, ?’T@ %, UNIVERSITA DEGLI STUDI
ELABORAZIONE DELLE INFORMAZIONI "%, y DELLA BASILICATA
Modulo di Sistemi di Elaborazione delle o
Informazioni
CIaSSI Docente:
Domenico Daniele
Bloisi

Central Processing Unit

Control Unit

nput Arithmetic/Logic Unit Output

Domenico Daniele Bloisi

* Professore Associato
Dipartimento di Matematica, Informatica - @
ed Economia
Universita degli studi della Basilicata
http://web.unibas.it/bloisi

* SPQR Robot Soccer Team
Dipartimento di Informatica, Automatica
e Gestionale Universita degli studi di
Roma “La Sapienza”
http://spqr.diag.uniromal.it

http://web.unibas.it/bloisi/
http://spqr.diag.uniroma1.it/

Interessi di ricerca

* |Intelligent surveillance
 Robot vision === Teat
* Medical image analysis ST L

"

4191 images taken from 7 videos for trai

https://youtu.be/9a70Ucgbi U

https://youtu.be/2KHNZX7UIWQ
https://youtu.be/2KHNZX7UIWQ
https://youtu.be/9a70Ucgbi_U
http://www.youtube.com/watch?v=9a70Ucgbi_U
http://www.youtube.com/watch?v=2KHNZX7UIWQ

UNIBAS WOlveS https://sites.google.com/unibas.it/wolves

DS WO{ e UNIBAS WOLVES is the robot soccer team of the
e& \\\“""I// b

University of Basilicata. Established in 2019, it is
focussed on developing software for NAO soccer
robots participating in RoboCup competitions.

Ny \\\\‘\oo

SPL 6 AR |
V)~ Qf’ T : = |
® UNIBAS WO I_VES /.“.., w]}'.iﬁﬁiﬁ mw Bﬂ T, 8 S £

team is twinned with
SPQR Team at
Sapienza University
of Rome

https://youtu.be/ji00OmkaWh20

https://sites.google.com/unibas.it/wolves
http://spqr.diag.uniroma1.it/
https://youtu.be/ji0OmkaWh20
http://www.youtube.com/watch?v=ji0OmkaWh20

Informazioni sul corso

Il corso di STATISTICA, INFORMATICA, ELABORAZIONE DELLE INFORMAZIONI

® include 3 moduli:

o SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
(il martedi - docente: Domenico Bloisi)
o INFORMATICA

(il mercoledi - docente: Enzo Veltri)
o PROBABILITA” E STATISTICA MATEMATICA
(il giovedi - docente: Antonella luliano)

® Periodo: | semestre ottobre 2022 — gennaio 2023

Ricevimento Bloisi

* |n presenza, durante il periodo delle lezioni:
Lunedi dalle 17:00 alle 18:00

presso Edificio 3D, Il piano, stanza 15
Si invitano gli studenti a controllare regolarmente la bacheca degli

avvisi per eventuali variazioni

* Tramite google Meet e al di fuori del periodo delle lezioni:

da concordare con il docente tramite email
M

\’

http://web.unibas.it/bloisi/corsi/sistemi-operativi.html#avvisi
http://web.unibas.it/bloisi/corsi/sistemi-operativi.html#avvisi
mailto:domenico.bloisi@univr.it

Recap

Dictionaries

° rubrica = {"Antonio":"323573", "Giuseppe":"322855", "Marina":"3449007"}

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Retrieving a Value from a Dictionary

“ [1] rubrica = {"Antonio":"323573", "Giuseppe":"3220855", "Marina":"3449007"}

“ [2] rubrica
{'Antonio’: '323573', 'Giuseppe': "322955', 'Marina’': '3449007'}
" o if "Laura"” in rubrica:
print(“"Laura c'e")

else:
print(“Laura non c'e")

[» Laura non c'e

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Retrieving a Value from a Dictionary

v' [11] print(rubrica["Marina"])

3449007

® [5] print(rubrica[2])

KeyError Traceback (most recent call last)
<ipython-input-5-1443¢816d35a> in <module>
----> 1 print(rubrica[2])

KeyError: 2

SEARCH STACK OVERFLOW

(1] ° print(rubrica["Mario"])

KeyError Traceback (most recent call last)
<ipython-input-12-6526382855a@> in <module>
----> 1 print(rubrica["Mario"])

KeyError: "Mario’

SEARCH STACK OVERFLOW

Retrieving a Value from a Dictionary

9 [12] print(rubrical"Mario"])

KeyError Traceback (most recent call last)
<ipython-input-12-6526382855a8> in <module>
----> 1 print(rubrica["Mario”])

KeyError: 'Mario’

SEARCH STACK OVERFLOW

s ° if "Mario" not in rubrica:
print("Mario non si trova.")
print(”Lo vuoi aggiungere?")

Mario non si trova.
Lo vuoi aggiungere?

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Getting the Number of Elements and Mixing Data
Types

* [23] rubrica["Ethan"] = ["323500","336599"]

{ ° rubrica

{'Antonio’: "322111°,
"Giuseppe’: 3229557,
'Marina': '3449007°,

'Mario’: "392356°,
'Ethan’: ['323500', '336599']}

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Creating an Empty Dictionary and Using for Loop to
Iterate Over a Dictionary

“ [28] rubrica = {}

“ [29] rubrica

{}
“ [31] rubrica["Lorenzo"] = "345098"
rubrica["Miriana"] = "333678"

; ° rubrica

{'Lorenzo’: "345098°', 'Miriana’: "333678'}

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

[38] rubrica["GianPio"] = "325298"
rubrica["Nicole"] = "332628"

[3@] rubrica.items()

dict_items([('GianPio’', "325298"'), ('Nicole’, "332628')])

[42] for chiave, valore in rubrica.items():

print(chiave+":"+valore)

GianPio:325298
Nicole:332628

° for chiave, valore in rubrica:

print(chiave+":"+valore)

ValueError Traceback (most recent call last)

<ipython-input-43-813750bf24f3> in <module>
----> 1 for chiave, valore in rubrica:

2 print(chiave+":"+valore)

ValueError: too many values to unpack (expected 2)

SEARCH STACK OVERFLOW

Sets

 Set: object that stores a collection of data in same way as mathematical
set

— All items must be unique
— Set is unordered
— Elements can be of different data types

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 9 -

[44] myset = set()

[45] myset

set()
[46] altro_set = set([’'a’,'b","'c’'])

[47] altro_set

[48] altro_ancora = set(’'abbccc’)

° altro_ancora

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

[1]

[5]

myset = {}

print(type(myset))

<class 'dict’'>

myset = set()

print(type(myset))

<class 'set'>

myset = {1}

print(type(myset))

<class 'set'>

@ Pearson

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

Esercizio

Come posso creare un set contenente i 3 elementi "uno”,
"due e "tre"?

@ pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

[3]

[4]

myset = {'uno’, 'due’, "tre'}
myset

{'due’, 'tre’', 'uno'}

myset = set('uno’, 'due’, "tre
myset

TypeError Traceback (most recent call last)
<ipython-input-4-87f3ddefb53a> in <module>
----> 1 myset = set('uno’, 'due’, 'tre’)

2 myset

TypeError: set expected at most 1 argument, got 3

SEARCH STACK OVERFLOW

myset = set(['uno’, 'due’,'tre’'])
myset

{'due’, "tre’', 'uno’}

Starting out with Python

Fifth Edition

" PYTHON®
NN

" sormon Chapter 10

Classes and Object-Oriented
Programming

P TONY GADDIS

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 20

Topics

* Procedural and Object-Oriented Programming
* Classes
» Working with Instances

* Techniques for Designing Classes

@ pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 21

Procedural Programming

 Procedural programming: writing programs made of functions that
perform specific tasks

— Procedures typically operate on data items that are separate from the
procedures

— Data items commonly passed from one procedure to another
— Focus: to create procedures that operate on the program’s data

@ pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 22

Input x
v

FUNCTION f:

v

Output f(x)

Procedural Programming |'

Global Data Global Data

Local Local Local
Data Data Data

@ rearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 23

Object-Oriented Programming (1 of 4

* Object-oriented programming: focused on creating objects

* Object: entity that contains data and procedures

— Data is known as data attributes and procedures are known as methods
= Methods perform operations on the data attributes

- Encapsulation: combining data and code into a single object

@ pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 24

Object-Oriented Programming (1 of 4

Adam

Student

Name

Roll No.

https://positiwise.com/blog/object-oriented-programming-vs-functional-programming-comparison/

Object-Oriented Programming (2 of4)

Object

Data attributes

I
Q Q
Q Q

Methods that operate
on the data attributes

Figure 10-1 An object contains data attributes and methods

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 26

Object-Oriented Programming of 4

- Data hiding: object’s data attributes are hidden from code outside the
object
— Access restricted to the object’s methods
= Protects from accidental corruption
= Outside code does not need to know internal structure of the object

* Object reusability: the same object can be used in different programs

— Example: 3D image object can be used for architecture and game
programming

@ pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 27

Object-Oriented Programming (of4)

Object

Data attributes

QO O
outside the
e Q

Methods that operate
on the data attributes

Figure 10-2 Code outside the object interacts with the object’s methods

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 28

=
—=
©
"
2
0
a
0]
o
Q
<
Q)
o
@)
O
3
S~
)
a
@
N~~~
—
N
w
(@)
N
(0]
oo
o
S~

An Everyday Example of an Object

- Data attributes: define the state of an object

— Example: clock object would have second, minute, and hour data
attributes

» Public methods: allow external code to manipulate the object
— Example: set time, set alarm time

* Private methods: used for object’s inner workings

@ pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 30

Classes (103)

* Class: code that specifies the data attributes and methods of a particular
type of object

— Similar to a blueprint of a house or a cookie cutter

* Instance: an object created from a class

— Similar to a specific house built according to the blueprint or a specific
cookie

— There can be many instances of one class

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 31

Classes 23

Blueprint that describes a house

House Plan

—
Living Roonmy

W

Instances of the house described by the blueprint

Figure 10-3 A blueprint and houses built from the blueprint

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 32

Classes o3

Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 33

Classes 33)

The housefly object is an

h f instance of the Insect class. It
ouselly has the data attributes and methods
object

The Insect classdescribes 11—~ — — — i described by the Insect class.

I
the data attributes and I Insect !

methods that a particular : class :

type of object may have. . The mosqui to object is an

mosquito

. instance of the Insect class. It
object

has the data attributes and methods
described by the Insect class.

Figure 10-4 The housefly and mosquito objects are instances of the Insect class

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 34

Class Definitions (104

* Class definition: set of statements that define a class’s methods and data
attributes
— Format: begin with class Class name:
= Class names often start with uppercase letter
— Method definition like any other python function definition

= sel f parameter: required in every method in the class — references the
specific object that the method is working on

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 35

Class Definitions o4

e Initializer method: automatically executed when an instance of the class
IS created

— Initializes object’s data attributes and assigns self parameter to the object
that was just created

— Format: def init = (self):
— Usually the first method in a class definition

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 36

° import random
class Coin:

def init (self):
self.sideup = 'Heads’

def toss(self):
if random.randint(@, 1) == 0:

self.sideup = "Heads'
else:
self.sideup = "Tails’

def get sideup(self):
return self.sideup

@PearSOH Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 37

Class Definitions 3 of4)

An object is created in memory
from the Coin class.

The Coinclass's _ _init_

@ method is called, and the self
parameter is set to the newly
created object

After these steps take place,
a Coin object will exist with its

sideup attribute set to 'Heads'.

Figure 10-5 Actions caused by the coin () expression

A Coin object

=SV SsaET).

self.sideup = 'Heads'

A Coin object

sideup —» "'Heads'

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 38

Class Definitions o4

* To create a new instance of a class call the initializer method
— Format: My instance = Class Name ()

* To call any of the class methods using the created instance, use dot
notation

— Format: My instance.method()

— Because the self parameter references the specific instance of the object,
the method will affect this instance

= Reference to self is passed automatically

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 39

° def main():
my _coin = Coin()
print('This side is up:', my_coin.get sideup())

print('I am tossing the coin ...")
my coin.toss()

print('This side is up:', my_coin.get _sideup())

main()

[» This side is up: Heads
I am tossing the coin ...
This side is up: Heads

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 40

def main():
my_coin = Coin()
print('This side is up:', my_coin.get_sideup())

print('I am tossing the coin ...")
my_coin.toss()

But now I'm going to cheat! I'm going to
directly change the value of the object's
sideup attribute to 'Heads'.
my_coin.sideup = 'Heads'’

print('This side is up:', my_coin.get _sideup())

main()

[» This side is up: Heads
I am tossing the coin ...
This side is up: Heads

@PearSOH Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 41

Hiding Attributes and Storing Classes in Modules

* An object’s data attributes should be private
— To make sure of this, place two underscores () in front of attribute name

= Example: current minute

 Classes can be stored in modules
— Filename for module must end in .py
— Module can be imported to programs that use the class

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 42

- [28] import random
class Coin:

def init_ (self):
self. sideup = 'Heads'

def toss(self):
if random.randint(@, 1) == O:
self. sideup = 'Heads'
else:
self. sideup = 'Tails'

def get sideup(self):
return self. sideup

def set_sideup(self,value):
self. sideup = value

° my_coin = Coin()
print(my_coin.get_sideup())
my _coin.set_sideup('Tails’)
print(my_coin.get_sideup())

O Heads
Tails 10 - 43

def main () :

my coin = Coin ()

print ('This side 1s up:', my colin.get sideup())
print ('I am golng to toss the coin 100 times:'")
for count in range (100) :

my coln.toss()

print (my coln.get sideup())

@ pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 44

The str method

* Object’s state: the values of the object’s attribute at a given moment

- str method: displays the object’s state

— Automatically called when the object is passed as an argument to the
print function

— Automatically called when the object is passed as an argument to the str
function

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 45

Working With Instances (1.3

* Instance attribute: belongs to a specific instance of a class
— Created when a method uses the self parameter to create an attribute

* If many instances of a class are created, each would have its own set of
attributes

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 46

Working With Instances o3

A Coin object

coinf »| _sideup — "Heads'

A Coin object

coin2 | sideup — 'Heads'

A Coin object

coin3 > sideup — 'Heads'

Figure 10-7 The coinl, coin2, and coin3 variables reference three coin objects

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 47

Working With Instances of3)

coini 7
coin2 >
coin3 -

Figure 10-8 The objects after the toss method

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

A Co1in object

__sideup — 'Tails'

A Coin object

__sideup — 'Tails’

A Coin object

__sideup —» 'Heads'

10 - 48

Accessor and Mutator Methods

* Typically, all of a class’s data attributes are private and provide methods
to access and change them

* Accessor methods: return a value from a class’s attribute without
changing it
— Safe way for code outside the class to retrieve the value of attributes

« Mutator methods: store or change the value of a data attribute

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 49

Passing Objects as Arguments

* Methods and functions often need to accept objects as arguments

* When you pass an object as an argument, you are actually passing a
reference to the object

— The receiving method or function has access to the actual object

= Methods of the object can be called within the receiving function or method,
and data attributes may be changed using mutator methods

@ pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 50

Techniques for Designing Classes (1 of3)

« UML diagram: standard diagrams for graphically depicting
object-oriented systems

— Stands for Unified Modeling Language

» General layout: box divided into three sections:
— Top section: name of the class
— Middle section: list of data attributes
— Bottom section: list of class methods

@ pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 51

Techniques for Designing Classes (2of3)

Class name goes here —

Data attributes are listed here —»

Methods are listed here —

Figure 10-9 General layout of a UML diagram for a class

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 52

Techniques for Designing Classes 3 f3)

Coin

__sideup

Ry i ¢ 1 s S Gl
toss()
get_sideup()

Figure 10-10 UML diagram for the Coin class

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 53

Finding the Classes in a Problem (1 of4)

* When developing object oriented program, first goal is to identify classes
— Typically involves identifying the real-world objects that are in the problem

— Technique for identifying classes:
1. Get written description of the problem domain
2. ldentify all nouns in the description, each of which is a potential class
3. Refine the list to include only classes that are relevant to the problem

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 54

Finding the Classes in a Problem (2 of4)

1. Get written description of the problem domain
— May be written by you or by an expert
— Should include any or all of the following:
= Physical objects simulated by the program
= The role played by a person
= The result of a business event
= Recordkeeping items

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 55

Finding the Classes in a Problem (of4)

2. ldentify all nouns in the description, each of which is a potential class
— Should include noun phrases and pronouns
— Some nouns may appear twice

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 56

Finding the Classes in a Problem (o4

3. Refine the list to include only classes that are relevant to the problem
— Remove nouns that mean the same thing

— Remove nouns that represent items that the program does not need to be
concerned with

— Remove nouns that represent objects, not classes

— Remove nouns that represent simple values that can be assigned to a
variable

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 57

Identifying a Class’s Responsibilities

* A classes responsibilities are:

— The things the class is responsible for knowing

= |[dentifying these helps identify the class’s data attributes
— The actions the class is responsible for doing

= |[dentifying these helps identify the class’s methods

* To find out a class’s responsibilities look at the problem domain
— Deduce required information and actions

@ pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved

10 - 58

Summary

* This chapter covered:
— Procedural vs. object-oriented programming
— Classes and instances
— Class definitions, including:
= The self parameter

= Data attributes and methods
= init and str functions

= Hiding attributes from code outside a class
— Storing classes in modules
— Designing classes

@Pearson Copyright © 2021, 2018, 2015 Pearson Education, Inc. All Rights Reserved 10 - 59

Corso di STATISTICA, INFORMATICA, ?’T@ %, UNIVERSITA DEGLI STUDI
ELABORAZIONE DELLE INFORMAZIONI "%, y DELLA BASILICATA
Modulo di Sistemi di Elaborazione delle o
Informazioni
CIaSSI Docente:
Domenico Daniele
Bloisi

Central Processing Unit

Control Unit

nput Arithmetic/Logic Unit Output

