
intro Docente:
Domenico Daniele
Bloisi

M
a

rz
o

 2
0

1
8

Corso di Laboratorio Ciberfisico
Modulo di Robot Programming with ROS

ROS

ROS (Robot Operating System) is an open-source, flexible
framework for writing robot software

Site: http://www.ros.org/

Blog: http://www.ros.org/news/

Documentation: http://wiki.ros.org/

http://www.ros.org/
http://www.ros.org/news/
http://wiki.ros.org/

ROS Tutorials

Idea

• Use processes to isolate functionalities of the system

• Processes communicate through messages (less efficient than
using shared memory, but safer)

• Benefits
 If a process crashes, it can be restarted
 A functionality can be exchanged by replacing a process

that provides it
 Decoupling of modules through inter-process

communication

ROS features

• Code reuse (exec. nodes, grouped in packages)

• Distributed, modular design (scalable)

• Language independent (C++, Python, Java, …)

• ROS-agnostic libraries (code is ROS indep.)

• Easy testing (ready-to-use)

• Vibrant community & collaborative environment

ROS = plumbing + tools + capabilities + ecosystem

publish-subscribe
messaging infrastructure
designed to support the
quick and easy construction
of distributed computing
systems.

tools for configuring,
starting, introspecting,
debugging, visualizing,
logging, testing, and
stopping distributed
computing systems.

a broad collection
of libraries that
implement useful
robot functionality,
with a focus on
mobility,
manipulation, and
perception.

ROS is supported
and improved by a
large community,
with a strong focus
on integration and
documentation.

https://answers.ros.org/question/12230/what-is-ros-exactly-middleware-framework-operating-system/

https://answers.ros.org/question/12230/what-is-ros-exactly-middleware-framework-operating-system/

Robot specific features

Provides tools for
• Message Definition
• Process Control
• File System
• Build System

Provides basic functionalities like:
• Device Support
• Navigation
• Control of Manipulator
• Object Recognition

ROS tools

• Command-line tools
• Rviz
• rqt (e.g., rqt_plot, rqt_graph)

Integration with external libraries

ROS provides seamless integration of
external libraries and popular open-source
projects

and many others

ROS installation

Suggested OS: Ubuntu 16.04.3 LTS (Xenial Xerus)

Suggested release: Kinetic Kame

• Install ROS from source (not recommended):
http://wiki.ros.org/kinetic/Installation/Source

• Install ROS from Debian packages:
http://wiki.ros.org/kinetic/Installation/Ubuntu

http://wiki.ros.org/kinetic/Installation/Source
http://wiki.ros.org/kinetic/Installation/Source

Post installation

Initialize rosdep in your system:

sudo rosdep init

rosdep update

rosdep is a tool for checking and installing package
dependencies in an OS-independent way

Note: do not use sudo for rosdep update. It is not required
and will result in permission errors later on.

http://wiki.ros.org/rosdep

http://wiki.ros.org/rosdep

ROS filesystem

• Package
unit for organizing software in ROS. Each package can contain
libraries, executables, scripts, or other artifacts

• Manifest (package.xml)
meta-information about a package (e.g., version, maintainer,
license, etc.) and description of its dependencies (other ROS
packages, messages, services, etc.)

http://wiki.ros.org/catkin/package.xml

http://wiki.ros.org/catkin/package.xml

package.xml

<?xml version="1.0"?>

<package>

<name>my_package</name>

<version>1.0</version>

<description>My package description</description>

<!-- One maintainer tag required, multiple allowed, one

person per tag -->

<maintainer email="my@mail.com">Your Name</maintainer>

<!-- One license tag required, multiple allowed, one

license per tag. Commonly used license strings: BSD,

MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1,

LGPLv3 -->

<license>LGPLv3</license>

Url tags and Author tags
<!-- Url tags are optional, but mutiple are allowed, one per tag.

Optional attribute type can be: website, bugtracker, or repository -

->

<url type="website">http://wiki.ros.org/my_package</url>

<!-- Author tags are optional, mutiple are allowed, one per tag.

Authors do not have to be maintianers, but could be -->

<author email="my@mail.com">Your Name</author>

<!-- The *_depend tags are used to specify dependencies.

Dependencies can be catkin packages or system dependencies. Use

build_depend for packages you need at compile time. Use

buildtool_depend for build tool packages. Use run_depend for

packages you need at runtime. Use test_depend for packages you need

only for testing. -->

Dependencies
<buildtool_depend>catkin</buildtool_depend>

<build_depend>message_generation</build_depend>

<build_depend>roscpp</build_depend>

<build_depend>roslib</build_depend>

<run_depend>message_runtime</run_depend>

<run_depend>roscpp</run_depend>

<run_depend>roslib</run_depend>

<!-- The export tag contains other, unspecified, tags --> <export>

<!-- You can specify that this package is a metapackage here: -->

<!-- <metapackage/> -->

<!-- Other tools can request additional information be placed here -->

</export>

</package>

Catkin workspace configuration

$ source /opt/ros/kinetic/setup.bash

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/src

$ catkin_init_workspace

$ cd ~/catkin_ws/

$ catkin_make

Open ~/.bashrc and add the following lines:
#ROS

source ~/catkin_ws/devel/setup.bash

load default workspace

overlay your catkin workspace

Catkin workspace

catkin_ws/ -- WORKSPACE

src/ -- SOURCE SPACE

CMakeLists.txt -- The 'toplevel' cmake file

package_1/

CMakeLists.txt

package.xml

...

package_n/

CMakeLists.txt

package.xml

...

devel/ -- DEVELOPMENT SPACE

build/ -- BUILD SPACE

catkin_make

• catkin_make is a convenience tool for building code in a catkin
workspace

• Execute catkin_make in the root of your catkin workspace

• Running the command is equivalent to:
$ mkdir build

$ cd build

$ cmake ../src -DCMAKE_INSTALL_PREFIX=../install

-DCATKIN_DEVEL_PREFIX=../devel

$ make

ROS definitions

• Node: process

• Message: Type of a data structure used to communicate between
processes

• Topic: stream of message instance of the same type used to
communicate the evolution of a quantity
e.g., a CameraNode will publish a stream of images. Each image is of
type ImageMessage (a matrix of pixels)

• Publishing: the action taken by a node when it wants to broadcast a
message

• Subscribing: requesting messages of a certain topic

ROS master

• One of the goals of ROS is to enable the use of small
and mostly independent programs (nodes), all running
at the same time

• The ROS master provides naming and registration
services to enable the nodes to locate each other and,
therefore, to communicate

• Every node registers at startup with the master

roscore

• Start the ROS master on a terminal with
roscore

• It provides bookkeeping of which nodes are active, which
topics are requested by whom, and other facilities

• Nodes need to communicate with the master only at the
beginning to know their peers, and which topics are offered

• After that the communication among nodes is peer-to-peer

Nodes

• Running instance of a ROS program

• Starting a node:
rosrun <package-name> <node-name>

• Listing running nodes:
rosnode list

 /rosout is a node started by roscore
(similar to stdout)

 / indicates the global namespace node 2node 1

master

registration registration

ROS definitions

http://wiki.ros.org/ROS/Concepts

http://wiki.ros.org/ROS/Concepts

Nodes

• Inspecting a node (list of topics published and subscribed,
services, PID and summary of connections with other nodes):
rosnode info node-name

• Kill a node (also CTRL+C, but unregistration may not happen)
rosnode kill node-name

• Remove dead nodes:
rosnode cleanup

Topics and Messages

• Communication in ROS exploits messages
• Messages are organized in topics
• A node that wants to share information will publish messages

on a topic(s)
• A node that wants to receive information will subscribe to

the topic(s)
• ROS master takes care of ensuring that publishers and

subscribers can find each other
• Use of namespaces

Topics and Messages

Images taken from

Programming for Robotics

Péter Fankhauser, Dominic Jud, Martin Wermelinger, Prof. Dr. Marco Hutter

Inspecting topics

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics/

• Listing active topics:
rostopic list

• Seeing all messages published on topic:
rostopic echo topic-name

• Checking publishing rate:
rostopic hz topic-name

• Inspecting a topic (message type, subscribers, etc…):
rostopic info topic-name

• Publishing messages trough terminal line:
rostopic pub -r rate-in-hz topic-name message-

type message-content

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

TurtleSim

Demo TurtleSim

roscore

Run turtlesim_node

1. Open a new terminal

2. run:
$ rosrun turtlesim turtlesim_node

Installing a new package

If package turtlesim is not found, we can install it

turtlesim_node running

turtle_teleop_key node

1. Open a new terminal

2. run:
$ rosrun turtlesim turtle_teleop_key

Playing with the turtle

Anatomy of a ROS Node

Parameters

http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams

• Setting values to nodes
• Actively queried by the nodes, they are most suitable for

configuration information that will not change (much) over time

double max_tv;

private_nh.param("max_tv", max_tv, 2.0);

double max_rv;

private_nh.param("max_rv", max_rv, 2.0);

planner->setMaxVelocity(max_tv, max_rv);

http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams

roslaunch

The ROS master and the nodes can be activated all at once,
using a launch file

See details at:
http://wiki.ros.org/roslaunch/XML

http://wiki.ros.org/roslaunch/XML

rosbag

• A bag is a serialized message data in a file

• rosbag for recording or playing data
rosbag record –a Record all the topics
rosbag info bag-name Info on the recorded bag
rospag play --pause bag-name Play the recorded
bag, starting paused
rospag play -r #number bag-name Play the
recorded bag at rate #number

Creating messages

• Messages in ROS are .msg files stored in the corresponding
package folder, within the msg dir

• Supported field types are:
– int8, int16, int32, int64 (plus uint*)
– float32, float64
– string
– time, duration
– other msg files
– variable length array [] and fixed length array [C]
– Header: timestamp and coordinate frame information

Example: creating messages

Header header

string child_frame_id

geometry_msgs/PoseWithCovariance pose

geometry_msgs/TwistWithCovariance twist

Exercise

Create a message Num.msg with a field
num of type int64

Exercise

• Follow the ROS beginner tutorials:
– Build and run the “Simple Publisher and Subscriber”
– Build and run the “Simple Service and Client”

• Modify the talker node and the listener node
1. Publish the message Num (created earlier) on the topic

oddNums:
 the message Num should be sent if the variable count is odd
 Num should contain the value of count

2. Additionally subscribe to topic oddNums
3. Create a callback function oddNumsCallback to print the content of
the received message

Exercise

Create a package with a client and a server:

• The server should take in input a service with an

integer and an array of strings and return an array of

strings, that are substrings of the corresponding input

strings

• The client should input a sequence of strings and

request a service

References and Credits

• Introduction to ROS
Roberto Capobianco, Daniele Nardi

• Robot Programming - Robotic Middlewares
Giorgio Grisetti, Cristiano Gennari

intro Docente:
Domenico Daniele
Bloisi

M
a

rz
o

 2
0

1
8

Corso di Laboratorio Ciberfisico
Modulo di Robot Programming with ROS

