Novembre 2017

UNIVERSITA | pipariimento
di VERONA | i INFORMATICA

Laurea magistrale in Ingegneria e scienze informatiche

Introduzione

:::ROS

Corso di Robotica
Parte di Laboratorio

Docente:
Domenico Daniele Bloisi

ROS

ROS (Robot Operating System) is an open-source, flexible
framework for writing robot software

Site: http://www.ros.org/

Blog: http://www.ros.org/news/ E E E R O S

Documentation: http://wiki.ros.org/

ldea

* Use processes to isolate functionalities of the system

* Processes communicate through messages (less efficient than
using shared memory, but safer)

* Benefits
" |f aprocess crashes, it can be restarted
= A functionality can be exchanged by replacing a process
that provides it
" Decoupling of modules through inter-process
communication

ROS features

* Code reuse (exec. nodes, grouped in packages)
e Distributed, modular design (scalable)

* Language independent (C++, Python, Java, ...)
 ROS-agnostic libraries (code is ROS indep.)

* Easy testing (ready-to-use)

* Vibrant community & collaborative environment

Robot specific features

Provides tools for Provides basic functionalities like:
* Message Definition * Device Support
* Process Control * Navigation

e Control of Manipulator
* Object Recognition

* File System
e Build System

ROS tools

e Command-line tools
* Rviz
 rgt(e.g., rqt_plot, rqt_graph)

Fle View Pugins Help
Move Camera, Select 20 Nav Goal 20 Pose Estmate

Waptears

T 02 amgin dwes: (Rxet] a
D 0% Visiskzsnion Markers (4 [
= o+ oot 1o (nosor 4

0 Status: OK

wsual Frakied
Comsinn Frabied O
Update Wferiad 01
apny a7y
Rahat Dosoripon obor_adesrrption
TE B

A

Ipha
Amount of ransparency to apply o the links.

Agy Remae

Tire

Winll Teme: | 1282243797.790104 Wall Elapsed: 1108630169 ROS Tme: | 1282243797.790102 ROS Bagned: |108.650170 Reset

Integration with external libraries

ROS provides seamless integration of
external libraries and popular open-source
projects

O -~ .
0 Bcazeso o pcl

OpenCV

and many others

ROS installation

Suggested OS: Ubuntu 16.04.3 LTS (Xenial Xerus) @

L~ ‘
- Q
ubuntu f!"

Suggested release: Kinetic Kame

=
1

* Install ROS from source (not recommended):
http://wiki.ros.org/kinetic/Installation/Source

* Install ROS from Debian packages:
http://wiki.ros.org/kinetic/Installation/Ubuntu

Post installation

Initialize rosdep in your system:

sudo rosdep 1nit
rosdep update

rosdep is a tool for checking and installing package
dependencies in an OS-independent way

Note: do not use sudo for rosdep update

ROS filesystem

 Package
unit for organizing software in ROS. Each package can contain
libraries, executables, scripts, or other artifacts

* Manifest (package.xml)
meta-information about a package (e.g., version, maintainer,
license, etc.) and description of its dependencies (other ROS
packages, messages, services, etc.)

http://wiki.ros.org/catkin/package.xml

package.xml

<?xml version="1.0"7?>

<package>

<name>my package</name>

<version>1.0</version>

<description>My package description</description>

<!-- One maintainer tag required, multiple allowed, one
person per tag —-—>

<maintainer email=“my@mail.com">Your Name</maintainer>
<!-- One license tag required, multiple allowed, one
license per tag. Commonly used license strings: BSD,
MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1,
LGPLv3 ——>

<license>LGPLv3</license>

Url tags and Author tags

<!-- Url tags are optional, but mutiple are allowed, one per tag.
Optional attribute type can be: website, bugtracker, or repository -
->

<url type="website">http://wiki.ros.org/my package</url>

<!-- Author tags are optional, mutiple are allowed, one per tag.
Authors do not have to be maintianers, but could be -->
<author email=“‘my@mail.com">Your Name</author>

<!-- The * depend tags are used to specify dependencies.
Dependencies can be catkin packages or system dependencies. Use
build depend for packages you need at compile time. Use

buildtool depend for build tool packages. Use run depend for
packages you need at runtime. Use test depend for packages you need
only for testing. —-->

Dependencies

<buildtool depend>catkin</buildtool depend>

<build depend>message generation</build depend>
<build depend>roscpp</build depend>
<build depend>roslib</build depend>

<run depend>message runtime</run depend>
<run depend>roscpp</run_ depend>
<run depend>roslib</run depend>

<!-- The export tag contains other, unspecified, tags --> <export>
<!-- You can specify that this package is a metapackage here: -->

<!-- <metapackage/> -->

<!-- Other tools can request additional information be placed here -->
</export>

</package>

Catkin workspace configuration

source /opt/ros/kinetic/setup.bash
mkdir -p ~/catkin ws/src

cd ~/catkin ws/src
catkln init workspace

cd ~/catkin ws/

catkin make

vy W A Ay

Open ~/.bashrc and add the following lines:
#ROS
source ~/catkin ws/devel/setup.bash

Catkin workspace

workspace folder/ —— WORKSPACE
src/ —-— SOURCE SPACE
CMakeLists.txt —-— The 'toplevel' Cmake file
package 1/

CMakeLists.txt
package.xml

package n/
CMakeLists.txt

package.xml

devel/ —— DEVELOPMENT SPACE
build/ —-— BUILD SPACE

catkin_make

* catkin make isa convenience tool for building code in a catkin
workspace

* Execute catkin make in the root of your catkin workspace

 Running the command is equivalent to:
$ mkdir build
$ cd build
S cmake ../src -DCMAKE INSTALL PREFIX=.. /install
—-DCATKIN DEVEL PREFIX=.. /devel
S make

ROS definitions

* Node: process

 Message: Type of a data structure used to communicate between
processes

* Topic: stream of message instance of the same type used to
communicate the evolution of a quantity
e.g. a CameraNode will publish a stream of images. Each image is of
type ImageMessage (a matrix of pixels)

* Publishing: the action taken by a node when it wants to broadcast a
message

e Subscribing: requesting messages of a certain topic

ROS definitions

Node

Publication

Node

Subscription

Publication Node

!

http://wiki.ros.org/ROS/Concepts

Topics and Messages

e Communication in ROS exploits messages

* Messages are organized in topics

* A node that wants to share information will publish messages
on a topic(s)

* A node that wants to receive information will subscribe to
the topic(s)

 ROS master takes care of ensuring that publishers and
subscribers can find each other

* Use of namespaces

sim1

‘ fsim1 fturtle1/command_velocity Ir)

o Jsimiturtie —» i1 uret/pose . '"."”"“"“_";'_:"

Inspecting topics

* Listing active topics:
rostopic list

* Seeing all messages published on topic:
rostopic echo topilc—-name

* Checking publishing rate:
rostopic hz topic—-name

* Inspecting a topic (message type, subscribers, etc...):
rostopic 1info topic—-name

* Publishing messages trough terminal line:
rostoplic pub -r rate-in-hz topic-name message-
type message—-content

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics/

ROS master

* One of the goals of ROS is to enable the use of small
and mostly independent programs (nodes), all running
at the same time

* For doing this, communication is needed
* The ROS master provides naming and registration

services to enable the nodes to locate each other and,
therefore, to communicate

roscore

e Start the ROS master on a terminal with
roscore

* |t provides bookkeeping of which nodes are active, which
topics are requested by whom, and other facilities

* Nodes need to communicate with the master only at the
beginning to know their peers, and which topics are offered

e After that the communication among nodes is peer-to-peer

Nodes

 Running instance of a ROS program

e Starting a node:
rosrun package-name executable—-name

* Listing running nodes:
rosnode 1list
= /rosout is a node started by roscore (similar to std output)
= /indicates the global namespace

Nodes

* Inspecting a node (list of topics published and subscribed,
services, PID and summary of connections with other nodes):
rosnode 1nfo node—-name

* Kill a node (also CTRL+C, but unregistration may not happen)
rosnode kill node-name

e Remove dead nodes:
rosnode cleanup

Anatomy of a ROS Node

ros: :Publisher pub;

// function called whenever a message is received
void my callback (MsgType* m) {

OtherMessageType m2;

1/ do something with m and valorize m2

pub . publish (m2) ;

int main(int argc, char** argwv) {
J/ initializes the ros ecosystem
ros: :init{arge, argwv);

// object to access the namespace facilities
ros: :NodeHandle n;

// tell the world that you will provide a topic named “published topic™
pub.advertise<OtherMessageType> ("published topic™);

// tell the world that you will provide a topic named "published topic®
Subscriber s =n.subscribe<MessageType*>("my topic™,my callback);
ros: :spin() ;

Parameters

e Setting values to nodes
* Actively queried by the nodes, they are most suitable for
configuration information that will not change (much) over time

double max tv;
private nh.param("max tv", max tv, 2.0);
double max rv;
private nh.param("max rv", max rv, 2.0);
planner->setMaxVelocity (max tv, max rv);

http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams

roslaunch

The ROS master and the nodes can be activated all at once,
using a launch file

<launch>

<group ns="turtlesimi">
<node pkg="turtlesim" name="sim" type="turtlesim_node"/>
</group>

<group ns="turtlesim2">

<node pkg="turtlesim” name="sim" type="turtlesim_node"/>

See details at:
http://wiki.ros.org/roslaunch/XML

</group>

<node pkg="turtlesim" name="mimic" type="mimic">
<remap from="input" to="turtlesimi/turtle1"/>
<remap from="output" to="turtlesim2/turtlel"/>
</node>

</launch>

roslaunch package-name launch-file-name

rosbag

* Abagis aserialized message data in a file

* rosbag for recording or playing data
rosbag record —a Record all the topics
rosbag info bag-name Info on the recorded bag
rospag play —--pause bag-name Play the recorded
bag, starting paused
rospag play -r #number bag-name Play the
recorded bag at rate #number

Creating messages

 Messages in ROS are .msg files stored in the corresponding
package folder, within the msg dir
e Supported field types are:
—int8, int16, int32, int64 (plus uint™)
— float32, float64
— string
— time, duration
— other msg files
— variable length array [] and fixed length array [C]
— Header: timestamp and coordinate frame information

Example: creating messages

Header header

string child frame 1d

geometry msgs/PoseWithCovariance pose
geometry msgs/TwistWithCovariance twist

Exercise

Create a message Num.msg with a field
num of type int 64

Exercise

* Follow the ROS beginner tutorials:
— Build and run the “Simple Publisher and Subscriber”
— Build and run the “Simple Service and Client”

 Modify the talker node and the listener node
1. Publish the message Num (created earlier) on the topic
oddNums:

* the message Num should be sent if the variable count is odd

* Num should contain the value of count
2. Additionally subscribe to topic oddNums
3. Create a callback function oddNumsCallback to print the content of
the received message

Exercise

Create a package with a client and a server:

* The server should take in input a service with an
integer and an array of strings and return an array of
strings, that are substrings of the corresponding input
strings

* The client should input a sequence of strings and
request a service

References and Credits

* |Introduction to ROS
Roberto Capobianco, Daniele Nardi

* Robot Programming - Robotic Middlewares
Giorgio Grisetti, Cristiano Gennari

Novembre 2017

UNIVERSITA | pipariimento
di VERONA | i INFORMATICA

Laurea magistrale in Ingegneria e scienze informatiche

Introduzione

:::ROS

Corso di Robotica
Parte di Laboratorio

Docente:
Domenico Daniele Bloisi

